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Preface 
The work presented in this report is the result of the project “Kan lidar data brukes som indikator på 

biologisk mangfold?: En litteratursammenstilling” (Lidar data as indicators for forest biological 

diversity: a review) with reference number 2018/7772. The project was funded by the Norwegian 

Environment Agency and conducted in autumn of 2018 by the Norwegian University of Life Sciences.  
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Sammendrag 
Økosystemet skog har en variert sammensetning av livsformer, og majoriteten av jordas terrestriske 

arter lever her. Strukturell kompleksitet kan forklare den store variasjonen av biodiversitet i skog. 

Fjernmåling kan brukes på stor skala for kartlegging med høy oppløsning. En fjernmålingsteknikk kalt 

light detection and ranging (lidar) er effektiv for kartlegging av skogstruktur. Lidar trenger gjennom 

trekronene, og kan dermed gi tredimensjonale data om alle kronesjikt. Lidar kan også beskrive 

topografiske egenskaper i tillegg til skogens vertikale og horisontale variasjon. Lidar gir derfor 

pålitelige data for å karakterisere og klassifisere habitat. Målet med denne studien var å undersøke 

om biologisk diversitet kan karakteriseres ved hjelp av skogstruktur representert med informasjon fra 

lidar. Vi gjorde en litteratursammenstilling av 36 studier som brukte variabler ekstrahert fra lidardata 

for å enten predikere utbredelsen av biologisk diversitet i skog eller for å evaluere forholdet mellom 

disse. Vårt mål var å utføre en meta-analyse av dataene hentet ut fra studiene for å ekstrahere 

informasjon om potensielle lidarindikatorer for biologisk diversitet. For hver studie hentet vi ut 

kvantitative data om effekt- og utvalgsstørrelse. Vi hentet også ut informasjon angående 

responsvariabelen (målet på biologisk mangfold og studiens taksa) og modellens forklaringsvariabel 

(lidar og andre fjernmålingsvariabler, og andre miljøvariabler). De ekstraherte dataene ble satt 

sammen i en tabell for sammenligning. På grunn av begrenset kvantitativ informasjon og stor 

heterogenitet innenfor studietaksa, skogtype og modelleringsmetode så var det ikke mulig å utføre 

en meta-analyse. Vi utførte likevel en systematisk litteratursammenstilling av studiene for å komme 

med preliminære anbefalinger for lidarindikatorer relatert til biologisk mangfold. Tidligere studier på 

biologisk mangfold har funnet av vegetasjonsstruktur (vegetasjonshøyde – og tetthet) i tillegg til 

topografiske egenskaper (høyde over havet og helning) er viktig for å forklare tilstedeværelsen av 

forskjellige taksa. Disse egenskapene kan også bli fremstilt gjennom variabler uthentet fra lidardata, 

og slike variabler har blitt brukt i flere studier. Andre skogindikatorer fra en tidligere rapport om 

overvåkning av terrestriske økosystemer ble også evaluert av eksperter innenfor fjernmåling for å se 

om disse kan bli fremstilt gjennom lidardata. Basert på de 34 studiene og kunnskap om bruken av 

lidardata relatert til skog, kunne vi komme fram til anbefalinger med tanke på effektiv bruk av 

lidardata for bruk i studier av biologisk mangfold. Pulssensorer med diskrete returer virker til å være 

den mest relevante typen av lidardata. Dette er både på grunn av sensorens egenskaper og fordi 

denne typen sensor har mye data som allerede er tilgjengelig for bruk. Vi anbefaler en tostegs-

tilnærming for å hente inn data hvor modellen først er kalibrert mot feltobservasjoner og så at 

modellen brukes mot et heldekkende lidardatasett. En forutsetning for denne tilnærmingen er at man 

har feltobservasjoner (grunnenhet) som kan brukes for kalibrering av en modell. Mobile arter trenger 

generelt større grunnenheter sammenlignet med stasjonære arter. Feltobservasjonene må 

posisjoneres for å forsikre at de har et romlig overlapp med fjernmålingsdataene. Forutsetningene for 

hvor nøyaktig posisjonene trenger å være avhenger av størrelsen på grunnenheten og hvilken type 

biologisk mangfold som skal kartlegges.  
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Utvidet sammendrag 

 
Introduksjon 

Omkring 80% av jordas terrestriske biodiversitet finnes I skog (Balvanera et al., 2014). I 

skogøkosystemer påvirker vegetasjonsstrukturen tilstedeværelsen og mengden av arter på lokal skala 

(Hunter and Hunter, 1999, Tews et al., 2004). Vegetasjonen og kompleksiteten i skog påvirker arters 

tilstedeværelse, mengde og adferd gjennom ulike mekanismer. Skogen kan påvirke tilgjengeligheten 

og diversiteten til ressurser og nisjer, ved at mikroklima blir påvirket, ved at hekkeplasser og 

leveområder for ulike arter blir formet, og at arter finner vern mot predatorer (MacArthur and 

MacArthur, 1961, Melin et al., 2014, Suggitt et al., 2011). Viktigheten av vegetasjon og habitatstruktur 

for opprettholdelse av biologisk diversitet i skog er anerkjent at flere og flere (Gustafsson et al., 2012, 

Noss, 1990, 1999). Mer strukturell kompleks skog har ofte høyere artsdiversitet enn skjøttet skog som 

er mindre kompleks (Ishii et al., 2004). Feltinventeringer er ressurskrevende, og også begrenset til 

arealet av feltflatene. Behovet for mer effektive metoder for karlegging av biologisk diversitet på stor 

skala er derfor tydelig. 

Ulike typer fjernmåling har vist seg å være gode supplement til feltdata siden man ved bruk av slike 

data kan gjøre karlegging på landskapsnivå og helt opp til global skala. Metoder for karlegging av 

biologisk mangfold ved hjelp av fjernmåling kan enten være direkte eller indirekte (Turner et al., 2003). 

Direkte metoder kan identifisere taksa eller arealtyper direkte fra fjernmålingsdataene. Indirekte 

metoder bruker fjermålingsdata til å modellere fordelingen av biologisk diversitet. Optiske sensorer, 

lik de som sitter i Landsat satellittene, er nyttige til å gjøre analyser av den horisontale strukturen og 

vegetasjonstyper på grov romlig skala. Lidar kan imidlertid anvendes på landskapsnivå for å kartlegge 

både den horisontale og vertikale strukturen til vegetasjonen (Zolkos et al., 2013) og alder (Racine et 

al, 2014). Lidar kan også brukes på relativt grov romlig skala, noe som gjør dataene egnet til å gjøre 

analyser av trender og mønstre i fordelingen av det biologiske mangfoldet. 

For å undersøke om det er en sammenheng mellom biologisk mangfold og strukturen av habitater i 

skog, karakterisert ved hjelp av lidar, brukte vi en meta-analyse tilnærming. Det finnes ingen tidligere 

litteratursammenstillingsstudier som har brukt meta-analyse for å analysere sammenhengen mellom 

skogstruktur representert ved variabler fra fjernmåling og biologisk mangfold. 

Materialer og metode 

Litteratursøket ble utført 19. september 2018 i databasen ISI Web of Science med denne 

kombinasjonen av søkekriterier: 

(Laser OR (lidar OR (light AND Detection AND Ranging)) OR (als OR (airborne AND laser AND 

scanning))) AND forest* AND (biodiversity OR diversity OR richness OR ecolog* OR species OR 

habitat). 

Søket ble gjort under feltet “Topic”, og de ble ikke lagt noen skranker med tanke på år eller språk. 
Søkeordene ble valgt slik at de var tilpasset oppdraget og slik at sannsynligheten for å utelate relevante 
studier ble minimert. Kombinasjonen av søkeord ble valgt med det formål å fange studier som har 
kvantifisert sammenhengen mellom miljøvariabler målt med lidar, og minst en av følgende: 
 

1. Direkte mål på biologisk diversitet, enten for: 

a. en enkelt art («presence/absence» eller hyppighet) 

b. en taksonomisk eller funksjonell gruppe av arter 
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c. flere grupper med arter (taksonomisk eller funksjonell) 

2. Indirekte mål på biologisk diversitet (habitat/vegetasjonsstruktur/død ved). 

Søket resulterte I 1897 artikler. Antallet ble redusert I henhold til utvalgte kriterier ved en mer 

inngående sjekk av hver studie. 1)Tittel, sammendrag og nøkkelord ble undersøkt for å eliminere 

irrelevante studier. 2) Andre litteratursammenstillinger og studier skrevet på andre språk enn engelsk 

ble ikke inkludert i biblioteket av referanser. 3) Studier som bare hadde brukt terrestrisk lidar, og ikke 

fra satellitt eller fly, ble eliminert. Terrestrisk lidar kan ikke brukes til å lage utbredelseskart over store 

områder. Når titler, sammendrag og nøkkelord ble lest, klassifiserte vi samtidig studiene i tre ulike 

kategorier av biologisk diversitet; enkeltarter (ca. 100 studier), flere arter (gruppere kategori b) og c) 

over), og habitater (ca. 30 studier). 

For studier der «habitat» var brukt som respons, valgte vi de som omhandlet habitater i skog, eller 

habitategenskaper som skogsuksesjoner eller død ved. Totalt fant vi 23 studier der vi kunne ekstrahere 

data. Studier der formålet var klassifisering av habitater i skog versus habitater i «ikke skog» ble ikke 

inkludert i denne litteratursammenstillingen. Vi ekstraherte følgende informasjon fra hver studie: 

responsvariabel (skogtype / skogegenskaper; inkludert død ved), forklaringsvariabler fra lidar, 

forklaringsvariabler fra andre typer fjernmåling, land, breddegrad, lengdegrad, utvalgsstørrelse, 

størrelsen på studieområdet og modelleringstilnærming (prediksjonsmodellering / annen statistisk 

modellering). For studiene som brukte prediksjonsmodellering, ekstraherte vi også mål på modellens 

tilpassing og kategoriserte dem som: eksellent, god, tilfredsstillende, dårlig, ingen sammenheng,     

 

Resultater og anbefalinger 

Totalt hentet vi ut informasjon fra 36 studier som hadde biologisk mangfold som responsvariabel og 

lidarvariabler som modellenes forklaringsvariabler. For de studiene som hadde habitat som 

responsvariabel ble det hentet ut informasjon fra 23 studier. Lokasjonen til studiene var spredt over 

hele kloden (Figur 4). Majoriteten av studiene var blitt utført i Nord-Amerika og Europa. Alle de 

sammenstilte studiene var blitt publisert i mellom år 2007 og 2018 hvor 60 % av studiene var blitt 

publisert etter 2015. 

Det finnes ikke én måleenhet som kan kvantifiserer biologisk mangfold helt perfekt, og det finnes 

heller ikke en indikator som passer for alle mønstre. Muligheten til å utforske biologisk mangfold på 

forskjellige måter vil ikke kun hjelpe oss med å oppnå mer kunnskap om økosystemfunksjon, men også 

være med å løse på praktiske problemer som det å koble diversitet og økosystemtjenester med 

økologisk tilstand. Majoriteten av studiene som hadde relatert biologisk mangfold til lidarvariabler 

inkluderte kun informasjon om tilstedeværelsen og hvor vanlig artene var, og de fleste brukte 

artsrikdom med «presence only» som responsvariabel. Artsrikdom er den vanligste måleenheten for 

biologisk mangfold, men den inneholder ikke informasjon om hvor vanlig en art er. To områder med 

like mange arter trenger ikke å han noen arter til felles, og derfor ha to helt forskjellige 

samfunnssammensetninger. Få studier relaterer lidarvariabler til endringer i 

samfunnssammensetninger. I tillegg er det få studier som relaterer lidarvariabler til funksjonell 

diversitet. Dette er et klart kunnskapshull som burde fylles for at en skal kunne vurdere nyttigheten 

av lidar for å predikere økologisk tilstand.  

I tillegg til mange forskjellige måter å måle biologisk mangfold for forskjellige taksonomiske grupper, 

skogtyper og geografiske regioner, så var det vanskelig å finne generelle mønstre mellom biologisk 

mangfold og lidarvariabler på grunn av det store antallet med mulige forklaringsvariabler. I 

prediksjonsmodellering er målet å maksimere prediksjonen og ikke nødvendigvis redusere antallet 
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med forklaringsvariabler. Det kan derfor være urealistisk å finne én eller flere gode lidarindikatorer 

som kan predikere biologisk mangfold på generell basis. Ved å kombinere vår ekspertise innenfor 

fjernmåling og økologi med informasjon hentet ut fra litteratursammenstilling, har vi prøvd å komme 

med forslag til grupper med lidarvariabler som fanger økologiskrelevante aspekter av et skoghabitat. 

Hvilke egenskaper innenfor habitatet som er viktig vil avhenge av habitatkravene til den taksonomiske 

eller funksjonelle gruppen man ønsker å se på. I fremtiden så kan en meta-regresjonsanalyse basert 

på studier som ser på enkeltarter være mulig å gjennomføre. Dette vil mest sannsynlig bety at man 

må kontakte forfatterne bak studiene for å få tilgang til grunndataene. Dette er fordi mange av 

studiene hadde en høy variasjon innenfor statistiske modeller, og tilgangen til grunndataene vil la oss 

få hente ut den informasjonen som er nødvendig for å beregne effektstørrelse. 

Litteratursammenstillingen viste at lidar har et stort potensial for prediksjonsmodellering av biologisk 

mangfold på en regional skala. Kalibrering av prediksjonsmodeller ved å bruke bakkesannheter som 

videre kan anvendes på beregningsceller over et areal er den mest pålitelige metoden. Lidardata kan 

også inneholde relevant strukturell informasjon som kan brukes uavhengig av kalibrering, men dette 

krever at indikatorene som brukes er nøye gjennomtenkt. Det er også viktig å huske at lidarsensorer 

også har noe å si for målemetodene og at disse også kan variere mellom skogtyper. Størrelsen og 

formen på bakkesannhetene må velges ut ifra hvilket fenomen som kartlegges. Generelt så vil mobile 

arter trenge større bakkeenheter enn stasjonære arter, og store enheter er mer nyttig for å kartlegge 

flere arter enn én art. 

Vi anbefaler prediksjonsmodellering i henhold til en arealbasert metode. Med denne tilnærmingen er 

det relativt enkelt å få heldekkende «wall-to-wall» prediksjoner av biologisk mangfold og evaluere 

habitategenskaper over relativt store områder. Informasjon om habitategenskaper kan brukes til å 

forbedre utbredelsesmodellering av arter og organismegrupper basert på kjente forhold mellom arter 

og habitatpreferanser. Lidar og andre fjernmålingsmetoder kan brukes for å evaluere indikatorer for 

økologisk tilstand (Tabell 8). Faktorer som truer biologisk mangfold slik som veier, grøfter og flatehogst 

kan også detekteres (Tabell 9). Lidar er en stor datakilde for å evaluere biofysiske egenskaper til trær 

og vegetasjon, og også terrengets egenskaper. Kombinert med andre datakilder som gir spektral 

informasjon, så vil nytten av disse dataene være enorm.  
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Abstract 

The forest ecosystem has a wide variation in life forms, and inhabit the majority of the Earth’s 

terrestrial species. Structural complexity can explain this high amount of biological diversity. Remote 

sensing is applicable over broad scales to map areas in high resolution. One technique called light 

detection and ranging (lidar) can be applied to map the structure of the forest. Lidar can do this 

because of its capability to penetrate the forest canopy and therefore retrieve three-dimensional data 

representing all canopy layers. Lidar can both depict topographical features as well as vertical and 

horizontal variation of the forest. Thus, lidar can provide reliable data for characterizing- and 

classifying habitats. In this study, we aimed to see if the relationship between biological diversity and 

the forest structure could be characterized. We reviewed 36 studies that used a metric for biological 

diversity as a response variable and 23 studies with forest habitat types to assess the relationship 

between these and lidar-derived variables. Our main aim was to perform a meta-analysis of the data 

to extract information about potential lidar indicators of biological diversity. For each study, we 

extracted quantitative data on effect- and sample sizes. We also extracted information concerning the 

dependent variable (measure of biological diversity and study taxa or habitat type) and model 

predictor variables (lidar and other remote sensing variables, and other environmental variables). The 

extracted data was compiled into a table for comparison. Because of limited quantitative information 

and large heterogeneity within study taxa, forest type and modelling method it was not possible to 

perform a meta-analysis. We did however systematically review the studies to be able to come with 

preliminary recommendations for lidar indicators of biological diversity. Previous studies on biological 

diversity has found that vegetation structure (vegetation height and density) as well as topographic 

features (elevation and slope) to be important for explaining the presence of different taxa. These 

features can also be represented by variables extracted from lidar data, and such variables have been 

applied in multiple studies. Other forest ecosystem indicators extracted from a report on monitoring 

of terrestrial ecosystems were also evaluated to see if these could be extracted from lidar data. Based 

on the 36 reviewed studies and expert knowledge from the use of lidar data related to forest 

applications, we were able to make some recommendations with regard to efficient use of lidar data 

for biological diversity applications. Pulsed laser sensors with discrete returns seem to be the most 

relevant type of lidar data. This is both because of the sensor properties and that these are the most 

available data in terms of area coverage. We recommend a two-stage approach where a model is 

calibrated based on ground-truth observations in the first stage, and the model is applied on a wall-

to-wall lidar dataset in the second stage. A prerequisite for this approach is that a basic unit is 

determined. The area of this unit must be determined so that it is relevant for the phenomenon that 

is being mapped. Mobile species generally requires larger basic units compared to stationary species. 

The ground-truth observations need to be positioned to secure that they spatially overlap with the 

remotely sensed lidar data. The requirements with regard to positioning accuracy will depend on the 

size of the basic unit and the specific measure of biological diversity in question.  
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Extended abstract 

Introduction 

Forests support about 80% of the World’s terrestrial biodiversity (Balvanera et al., 2014). In forest 

ecosystems, vegetation structure affects the presence and abundance of species at local scales 

(Hunter and Hunter, 1999, Tews et al., 2004). Forest vegetation structure and its complexity influence 

species presence, abundance and behaviour through several mechanisms. It can affect the availability 

and diversity of resources and niches, modifying microclimatic conditions, and by providing breeding 

and roosting sites, concealment or shelter from predators (MacArthur and MacArthur, 1961, Melin et 

al., 2014, Suggitt et al., 2011). The importance of vegetation and habitat structure for the maintenance 

of biodiversity in forests is increasingly recognised (Gustafsson et al., 2012, Noss, 1990, 1999). More 

structural complex forests often have higher species diversity than less complex, managed forests 

(Ishii et al., 2004). Ground sampling is resource demanding in terms of time and cost, and also limited 

to the spatial scale of the survey plots. The need of more effective methods for broad-scale mapping 

of biological diversity is evident.  

Different types of remote sensing have been found to be a good supplement for ground sampling as 

the methods can map areas from landscape to global scale. Approaches for mapping biological 

diversity using remote sensing can in general be either direct or indirect (Turner et al., 2003). Direct 

approaches can identify taxa or land cover types directly from the remote sensing data. Indirect 

approaches use remote sensing data to model the distribution of biological diversity. The structural 

complexity of a forest can be studied by multiple remote sensing techniques. Optical sensors like the 

ones carried by the Landsat satellites are useful in studying horizontal structure and vegetation types 

on a broad landscape scale. However, lidar (light detection and ranging) can be applied on landscape 

scale to map both horizontal and vertical vegetation structures (Bergen et al., 2009) in addition to 

other forest inventory attributes like aboveground biomass (Zolkos et al., 2013) and forest age (Racine 

et al, 2014). Lidar can also be used over broad extents, which makes it a good tool for examining 

patterns of biological diversity. 

To assess if there is an association between biological diversity and forest habitat structures that could 

be characterized by lidar, we aimed to use a meta-analysis approach. No previous review studies on 

the subject have carried out a meta-analysis to assess the influence of habitat structure, quantified 

with lidar or other remote sensing techniques, and measures of biological diversity. No previous 

review studies on the subject have carried out a meta-analysis to assess the relationship between 

forest structure quantified by lidar and other remote sensing techniques and measures of biological 

diversity.  

 

Material and methods 

The literature search was conducted September 19th 2018 in the database ISI Web of Science with 

this combination of terms: 

(Laser OR (lidar OR (light AND Detection AND Ranging)) OR (als OR (airborne AND laser AND 

scanning))) AND forest* AND (biodiversity OR diversity OR richness OR ecolog* OR species OR 

habitat). 
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The search was performed under “Topic”, and there were no restrictions with regard to year or 
language. The words in the search term were chosen to represent the review study and to minimize 
the probability of excluding relevant studies. Our combination of search terms were selected with the 
intention of capturing studies that have quantified the relationship between environmental variables 
– as quantified by lidar – and at least one of the following: 

1) Direct measures of biological diversity, either for: 

         i) a single species (presence/absence or abundance) 

ii) a taxonomic or functional group of species 

iii) multiple groups (taxonomic of functional) of species 

2) Indirect measures of biological diversity (habitat/vegetation structure/dead wood). 

The search resulted in 1897 articles. This number of studies were further reduced according to certain 

criteria in a more detailed scrutiny of each study. 1) Title, abstract and keywords of each article were 

examined to remove irrelevant studies. 2) Review studies and studies written in other languages than 

English were not included in the filtered reference library. 3) Studies that only used ground-based lidar 

(terrestrial laser scanning; TLS) and not aerial or spaceborne lidar as their predictor data were 

excluded from the list. The rationale behind this is that TLS operate on a smaller scale, and the data 

from these systems cannot be used to make large-area distribution maps. When scanning the titles, 

abstracts and keywords of the papers, we also classified the papers into three main categories 

according to the type of biological diversity response variable reported; single species (ca. 100 papers), 

multiple species (pooling categories ii and iii) and “habitat” (ca. 30 papers). 

For the papers using “habitat” as the response variable, we selected those that concerned different 

types of forest habitats or forest habitat attributes like forest successional stages or dead wood. In 

total, we found 23 papers that we could extract data from. Papers dealing with classification of forest 

versus non-forest habitats were not included in this review. We extracted the following information 

from each paper: response variable (forest type/forest attribute (including dead wood)), lidar 

predictors/explanatory variables, other remote sensing predictors/response variables, country, 

latitude, longitude, sample size, sample scale, study area size, and modelling approach (prediction 

modelling/other statistical modelling). For the prediction modelling papers, we also extracted the 

predictive power (PP) of the models and categorized them as either: excellent, good, fair, poor, bad, 

fail. 

Results and recommendations 

In total, we extracted information from 36 studies having biological diversity as the response variable 

lidar variables as model predictors. For those studies having habitat as a response variable, we 

extracted information from 23 studies. The spatial location of the studies is scattered across the globe 

(Figure 4). The majority of the studies have been carried out in North America and Europe. All the 

reviewed studies were published between 2007 and 2018 where 60 % of the studies were published 

after 2015. 

There is no one metric that perfectly quantifies biological diversity, and there is no single index that 

will suit all needs. The ability to examine biological diversity in different ways, will not only help us 

gain better understanding of how ecosystems function, but also sheds light on issues of practical 
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concern such as the link between diversity and ecosystem services and ecological state. However, the 

large majority of studies that have related biological diversity to lidar predictors include only 

information on the presence and abundance of species, and the majority use species richness with 

presence only as dependent variable. Species richness is the iconic measure of biological diversity, but 

it contains no information about the abundance of species. Two areas with exactly the same number 

of species may have no species in common and thus a completely different community composition. 

Studies relating lidar variables to changes in community composition are scarce. Furthermore, few 

studies have related lidar variables to measures of functional diversity. This is an important knowledge 

gap that should be filled in order to assess the usefulness of lidar to predict ecological state. 

In addition to having many different measures of biological diversity from different taxonomic groups, 

forest types and geographic regions, a major challenge in trying to extract some general patterns 

about the relationship between biological diversity and lidar-derived variables, is the large number of 

candidate predictors. In prediction modelling, the aim is to maximise prediction and not necessary to 

restrict the number of predictors. It may not be realistic to find one or a few good lidar indicators that 

can predict biological diversity in general. We have tried to use our own expertise within remote 

sensing and ecology with the added insights from this literature review, to suggest groups of lidar 

variables that captures ecologically relevant aspects of the forest habitat. Which attributes of the 

habitat is important, will depend on the habitat requirements of the focal taxonomic or functional 

group. In the future, a meta-regression based in single-species models may possible. However, this 

will probably mean contacting authors to get access to original data. This is because many of the 

studies have a high heterogeneity of statistical models, and the access to the original data will let us 

get the needed information to calculate effect sizes. 

 

The review of the literature showed that lidar has a great potential for predictive modelling of 

biological diversity on a regional scale. Calibration of predictive models using ground-truth 

observations, that can be applied to grid cells over an area is the most reliable approach. However, 

lidar data can also contain relevant structural information that can be used even without calibration. 

This strategy requires that the relevance of metrics calculated from the lidar data is carefully 

considered. It is also important to point out that the metrics that is derived from lidar are dependent 

on the specific lidar sensor that is used, and the specific acquisition parameters used in a particular 

mission (Næsset, 2009). The metrics derived from lidar will also tend to be different between forest 

types. The size and shape of the ground-truth plots must be chosen according to what phenomenon 

that is being mapped. In general, we can say that mobile species require larger basic units than 

stationary, and that large basic units are more useful for mapping multiple species than one single 

species.  

Here we have recommended prediction modelling using an area-based approach. With such an 

approach, it is relatively straightforward to obtain wall-to-wall predictions of biological diversity 

measures and assess habitat features over relatively large areas. This information can be used to 

improve predictive distribution modelling of species and groups of organisms, based on known 

habitat-species relationships. Using lidar and other remote sensing to assess indicators of ecological 

state can also be carried out (Table 8). Factors that are threats to biological diversity, such as roads, 

ditches and clearfellings can also be detected (Table 9). Lidar is a powerful data source for assessing 
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biophysical properties of trees and vegetation, and also physical properties of the terrain. Combined 

with other data sources that provide spectral information, the utility of the data is huge. 
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1 Introduction 

Forests support about 80% of the World’s terrestrial biodiversity (Balvanera et al., 2014). In forest 

ecosystems, vegetation structure affects the presence and abundance of species at local scales 

(Hunter and Hunter, 1999, Tews et al., 2004). Forest vegetation structure and its complexity influence 

species presence, abundance and behaviour through several mechanisms. It can affect the availability 

and diversity of resources and niches, modifying microclimatic conditions, and by providing breeding 

and roosting sites, concealment or shelter from predators (MacArthur and MacArthur, 1961, Melin et 

al., 2014, Suggitt et al., 2011). The importance of vegetation and habitat structure for the maintenance 

of biodiversity in forests is increasingly recognised (Gustafsson et al., 2012, Noss, 1990, 1999). More 

structural complex forests often have higher species diversity than less complex, managed forests 

(Ishii et al., 2004). A review on the structural complexity found that most studies found a positive 

relationship between habitat heterogeneity and animal species diversity (Tews et al., 2004). 

Traditionally, data for species distribution mapping has been based on ground surveys of where the 

species are registered in the field. However, ground sampling is resource demanding in terms of time 

and cost and limited to the spatial scale of the survey plots. The need of more effective methods for 

broad-scale mapping of biological diversity is evident. Making use of the recent advances in remote 

sensing in ecological studies may improve our knowledge about relationships between species and 

habitat structure (Simonson et al., 2014a, Davies and Asner, 2014). 

Different types of remote sensing have been found to be a good supplement for ground sampling as 

the methods can map areas from landscape to global scale. Approaches for mapping biological 

diversity using remote sensing can in general be either direct or indirect (Turner et al., 2003). Direct 

approaches can identify taxa or land cover types directly from the remote sensing data. Indirect 

approaches use remote sensing data to model the distribution of biological diversity. The structural 

complexity of a forest can be studied by multiple remote sensing techniques. Optical sensors like the 

ones on the Landsat satellites are useful in studying horizontal structure and vegetation types on a 

broad landscape scale. However, lidar (light detection and ranging) can be applied on landscape scale 

to map both horizontal and vertical vegetation structures (Bergen et al., 2009) in addition to other 

forest inventory attributes like biomass (Zolkos et al., 2013) and forest age (Racine et al., 2014). 

To assess if there is an association between biological diversity and forest habitat structures that could 

be characterized by lidar, we aimed to use a meta-analysis approach. Previous review articles on this 

subject have looked at animal diversity and lidar derived habitat structures (Simonson et al., 2014a, 

Davies and Asner, 2014) and given an overview of the indicators of biological diversity. No previous 

review studies on the subject have carried out a meta-analysis to assess the relationship between 

forest structure quantified by lidar and other remote sensing techniques and measures of biological 

diversity.  

This report is divided into four chapters. In Chapter 2, we provide background information on lidar 

systems and present relevant variables for forest biological diversity that can be extracted from lidar 

data. In Chapter 3, we present the review of how lidar data has been used to study forest biological 

diversity. We also present our main findings and discuss the implications. In Chapter 4, we make 

general recommendations for biological diversity indicators. We also make recommendations for the 

acquirement of lidar data. Towards the end of Chapter 5, we summarize our findings and 

recommendations. 
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2 Lidar background  

Lidar systems measure the distance between the laser sensor and the surface of a target. For the most 

common sensors, distance is measured by determining the time between a laser pulse is emitted, and 

an echo is returned to the sensor (Wehr and Lohr, 1999). Lidar is an active remote sensing technique, 

meaning that it does not depend on reflected sunlight, but actively emits light pulses that are reflected 

back to the sensor. The most frequently used sensors use near-infrared light, but sensors depending 

on light pulses of wavelengths such as shortwave-infrared and green also exists. This means that lidar 

can be operated without sunlight, contrary to so called passive techniques such as optical remote 

sensing that depend on an external source of light. The resulting dataset after a lidar survey is a cloud 

of echoes representing the three-dimensional coordinates (x,y,z) for the reflected laser pulses’ 

location on the surface (Figure 1). 

 

Figure 1 Three-dimensional locations of reflected laser pulses over a forest. The coloured points represent the 

vegetation and the grey plane beneath is the terrain model. The points are coloured according their height above 

the terrain model. 

Lidar can mainly be applied on three different platforms: spaceborne, airborne and terrestrial. The 

platform used will affect the resolution of the data and the area that can be covered. Spaceborne lidar 

can normally have a global cover and output data with resolutions normally being over 30 m. Airborne 

lidar generally cover smaller areas typically up to 1,000 km2 in each mission (Simonson et al., 2014b, 

Næsset, 2014), but have higher output resolutions. Terrestrial based lidar can also be used to measure 

vertical structures, but the techniques cannot be used for large-area measurements. Spaceborne and 

airborne lidar will therefore be focused on here. 
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2.1 Description of airborne and spaceborne lidar 

All lidar sensors can mainly be divided into two groups: pulse methods and continuous wave. Pulse 

lasers emit short (4-10 nm) pulses, typically of near-infrared light. Continuous wave on the other hand, 

a sinusoidal signal is produced by a continuously emitting laser and the phase change is measured and 

converted into travel time (Wehr and Lohr, 1999). The wave will have different peaks based on the 

magnitude of returns returning at the same time. Between the two groups, the former group of lidar 

sensors are most commonly used, and will be focused on here. 

With pulse lasers (Figure 2), the area enlightened by the pulse increases proportionally to the distance 

from the sensor, and by the time it hits an object beneath an airborne platform operated on a typical 

altitude, it leaves a footprint with a size of 15-25 cm. These systems are classified as small-footprint 

systems (Figure 2c). The pulse sensors can further be divided into two types; 1) sensors that are 

capable of capturing one or more echoes from the returning pulse, referred to as discrete-return lidar, 

and 2) sensors that record the entire energy distribution of the returning pulse, referred to as full-

waveform recording lidar (Figure 2a and b). If the space beneath the footprint is composed of more 

than one layer, for example a tree where permeable branches are distributed over a certain distance 

along the travel trajectory of the pulse, the energy of one specific pulse is returned over a range of 

distance from the sensor. For discrete pulse systems that register an echo when the returning pulse 

energy exceed a certain threshold, this will result in multiple echoes from the same pulse. When it 

comes to measuring vertical structures in forests with these systems, the first and last echoes are 

especially important, as it is those that are used to make the digital surface model (DSM) and the 

digital terrain model (DTM), respectively. 

There are in general two ways that laser data can be sampled, which is either by profiling or scanning. 

Profiling lasers are aimed in one specific direction, which often will be towards the earth from an 

aircraft or a satellite (Campbell and Wynne, 2011). When the laser platform is moving, the laser will 

create a single track of laser echoes (Figure 2d). Scanning lasers use a mechanism to distribute the 

pulses also perpendicular to the flight direction, for example an oscillating mirror or a rotating polygon 

mirror (Figure 2c; Campbell and Wynne, 2011). The more or less continuous pattern of reflected laser 

pulses can be used to create images of the scanned terrain and surface. The first instruments that 

were designed were profiling lasers and were useful for determining the terrain before laser scanners 

were developed. However, profiling have limitations when it comes to acquiring information about 

large areas to map the terrain and surface (Toth and Petrie, 2018), although large-area applications 

are demonstrated (Nelson et al., 2005).  
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Figure 2 Differences between discrete-return and full-waveform recording lidar sensors with differing footprint 

sizes. A) Spaceborne and full-waveform lidar with large footprint (ca. 60 m in diameter). B) Airborne and 

waveform lidar with multiple large footprints (ca. 20 m in diameter). C) Discrete-return scanning lidar with small 

footprints. D) Discrete-return profiling lidar with small footprints. Adapted Wulder et al. (2012). 

Airborne lidar are mainly based on two components: the laser scanner and a GPS/IMU system 

(Beraldin et al., 2010). The laser scanner includes transmitter and receiver units for measuring the 

distance between the aircraft and the surface, and a scanning mechanism that is used to scan the 

surface in a specific pattern. The GPS/IMU system allows one to reconstruct the flight path as it 

measures the position and orientation of the laser system. The laser platform also includes a control 

and data recording unit, which is in control of the whole system and stores the data recorded from 

the scanner and GPS/IMU. At last, an operator laptop is used to communicate with the control and 

data recording unit so that the survey can be monitored. 

An object’s reflectivity depends on the wavelength that the laser has, and one specific system will 

therefore be more or less suited for scanning a certain type of object depending on its reflectivity. 

Laser systems for terrestrial applications use wavelengths between 800 nm and 1550 nm depending 

on which surface that the lasers are applied on (Beraldin et al., 2010). Airborne laser systems often 

use wavelengths between 900-1064 nm for terrain data acquisition (Lefsky et al., 2002). This 

wavelength is also useful for vegetation studies as vegetation reflectance also is high within this 

spectrum. 

When surveying the area and acquiring lidar data, no interpretation of the area is being done. To be 

able to get information about the terrain and surface in the surveyed area, the data has to be filtered 

and classified. The filtering classifies the lidar echoes as either terrain or surface based on some 

algorithm. Often, the lowest echoes are assumed to represent the terrain and not vegetation and 

other objects. By interpolating between these different echoes it is possible to make a digital terrain 

model (DTM), which represents the topography of the study area. The echoes that are classified as 

vegetation echoes, are used to construct a digital surface model (DSM). Outliers can also be present 
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in the lidar data when for example the laser hits a bird far above the terrain. These echoes has to be 

filtered out so that they do not create information about the surface that does not exist in reality. 

Spaceborne lidars use satellites orbiting the Earth as their platform for studying the surface on the 

planet. Spaceborne remote sensing is more commonly performed by optical imagery sensors like 

Landsat or Quickbird, but also with active radar sensors like synthetic aperture radar (SAR; Gillespie 

et al., 2008). All spaceborne laser sensors like the Geoscience Laser Altimeter System (GLAS) on Ice, 

Cloud and land Elevation Satellite (ICESat) have waveform lasers with large footprints and use profiling 

to acquire information about the area below (Toth and Petrie, 2018). Because of great flying altitudes 

and speeds for spaceborne platforms, only laser profiling of the earth can be performed, and laser 

scanning from satellites has not yet been done (Toth and Petrie, 2018). The GLAS instrument was 

operational from 20 February 2003 to 11 October 2009 and recording waveform information in a 70 

m footprint, separated by 170 m along track (Abshire et al., 2005). These footprints were remeasured 

every 8 days during the mission. The GLAS information has been used to map and monitor vegetation 

(Nelson et al., 2009). The new instrument carried by ICESat-2 was launched in September 2018 one of 

the objectives is to measure heights and estimate carbon storage in vegetation. The Advanced 

Topographic Laser Altimeter System (ATLAS) instrument on ICESat has one beam that is split into three 

paired beams spaced 3 km apart and 90 m between the beam pair. The footprints are 17 m and overlap 

in along the track direction. The latest lidar instrument in space is Global Ecosystem Dynamics 

Investigation (GEDI) that was mounted on the international space station 5 December 2018. GEDI is 

specifically designed for mapping and monitoring vegetation. The footprint size of the GEDI 

instrument is 25 m and it has tree beams split into a total of 8 ground tracks spaced ~600 m apart with 

an along-track spacing of 60 m (Stavros et al., 2017). 

 

2.2 Data fusion 

Lidar can be combined with other types of remote sensing to create datasets with additional 

information. Data fusion are generally done to improve prediction of continuous and categorical 

variables (Zhang et al., 2009).  

Optical data is often used together with lidar-derived data. The fusion can create complementary 

information on the spectral and spatial structure of a forest. The combination of optical and lidar data 

can give better classifications of land cover types (Yang et al., 2015), tree species (Vauhkonen et al., 

2014)  and prediction of  forest canopy height  (Hudak et al., 2002) than can be done with either of 

the two data sources independently. High-resolution spectral (hyperspectral) data can be combined 

with lidar for better tree species classification (Dalponte et al., 2012, Naidoo et al., 2012). Texture 

measurements derived from optical data can also be used to better estimate horizontal vegetation 

structures together with lidar (Zhang et al., 2009).  

Another remote sensing type of data that can be fused with lidar is radar. Radar is an active remote 

sensing technique, but uses microwave wavelengths and not visual and near-infrared wavelengths like 

lidar. Microwave radar techniques are similar to laser techniques as both can transmit wavelengths 

within a narrow range and receive the returning energy to map the surface. However, radar 

techniques use a different type of wavelength, which is not as high in energy as lidar (Wehr and Lohr, 

1999). Because of this, lidar does more accurate measurements compared to radar. The combination 
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of lidar and radar has also given mixed results in how the prediction models improve when the data is 

fused (Kaasalainen et al., 2015).  

2.4 Lidar variables relevant to forest biological diversity 

Forest structure is the three-dimensional arrangement of layers in a forest, normally divided into 

vertical and horizontal layers (Franklin & Van Pelt, 2004). This arrangement includes old and young 

trees, shrubs, ground vegetation and dead wood (McCleary & Mowat, 2002). The relationship 

between this three-dimensional structure and habitats for organisms has been recognised for decades 

(Macarthur and Macarthur, 1961). Because lidar is a useful tool within forestry applications for 

characterizing forest structure, ecologically related studies have also applied lidar for assessing species 

habitats (Hill et al., 2014). Lidar can also be used over broad extents, which makes it a good tool for 

examining relationships between lidar-derived variables and patterns of biological diversity. Here, we 

will give an overview of lidar-derived variables that may be relevant for forest biological diversity. 

2.4.1 Topography 

Topography is the shape and features of the terrain, and is represented by the DTM produced from 

lidar data. Multiple metrics can be calculated from the DTM, and the most common ones are elevation, 

slope and aspect. Elevation is the height of the terrain relative to the sea level. Slope is the steepness 

of the terrain. Aspect is the compass direction of the terrain. 

The topography of an area can have local effects on species diversity. For plants, topography can alter 

their growing conditions and thus lead to different species patterns (Katovai et al., 2015), but also 

animals can be affected (Zhou et al., 2015). Elevation has long been considered an important variable 

for biological diversity (Lomolino, 2001). The aspect of the terrain may also have strong effects on 

biological diversity as it may determine the amount of sun radiation the area receives (Mccune and 

Keon, 2002). The interaction between slope and aspect has been found to have a significant effect on 

plant species richness with warmer slopes having more species (Badano et al., 2005). Soil moisture is 

also a factor that may affect local biological diversity. It can be represented in many ways through 

different topographic indices, but topographic wetness index (TWI) is one of the most common types. 

TWI uses the slope to measure the local drainage and hydrological paths (Beven and Kirkby, 1979). 

For plant species abundance, TWI explained 30 % of the variance (Zinko et al., 2005). In addition to 

elevation, slope, aspect, sun radiation and TWI there are a number of potential topographical variables 

that can be computed from a lidar derived terrain model depending on the objective (Szypula, 2017).  

2.4.2 Vegetation structure 

The vegetation structure of a habitat is its morphology and how the habitat is constructed. For a forest, 

the structure will often be more heterogeneous and have higher complexity where it has multiple 

layers of vegetation and varies in openness and closedness (Rutten et al., 2015). For lidar data, the 

structure metrics can be calculated from echoes that are classified as being part of the surface (DSM) 

and not the terrain (DTM). Forest vegetation structure can mainly be divided into two categories based 

on the forest’s three-dimensional form: vertical structures and horizontal structures. 

The vertical structures are the variations of the vertical profile of the forest. The different metrics for 

vertical structures often work on different layers of the forest (canopy, mid-story and understory). The 

heights of the different layers can be calculated and represented as height percentiles (Næsset, 2002). 
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Variation of heights can also have a positive effect on biological diversity as tree size variation create 

a multi-layered forest, which increase structural complexity. The density of the different layers relate 

to the penetration rates of the laser pulses. The density of the different layers can be calculated as the 

proportion of pulses above certain heights (Næsset, 2002) and this measure often can be represented 

as the density of leaves above that height (Magnussen and Boudewyn, 1998). 

Horizontal structures can be defined as spatial variations in the horizontal profile. Different indices 

can be calculated from lidar data as horizontal structures. Gaps are openings and closures of the forest 

canopy (St-Onge et al., 2014). From these gaps different edge metrics can also be calculated, where 

the outline of the gaps represent edges. Patchiness is the horizontal variation of density of different 

height classes (Roth, 1976). It is often calculated as Shannon Diversity using canopy height and density. 

Intensity metrics represent the relative strength of the reflected light compared with the emitted light 

(Song, 2002). Because different objects have different reflectance, the intensity will differ between 

objects. In that way intensity could be useful in classifying different land covers (Yan et al., 2015). 

Although lidar is very useful for detecting and predicting mass and structural properties of the 

vegetation, it also has its limitations especially for low and/or sparse vegetation. There are mainly 

three reasons. 1) Point density: Most trees and other vegetation have little surface area in the top. 

This means that point data with a certain spacing between the echoes, do not have 100 % probability 

of hitting the top of every individual of vegetation. 2) Penetration rate: For a lidar pulse to trigger an 

echo, the returning energy needs to exceed a certain threshold. Even if a pulse hits exactly at the very 

pinnacle of a tree, the mass of the treetop is usually not substantial enough so that an echo is 

triggered. 3) Errors in the DTM: The automatic algorithms that is used for classification of echoes into 

terrain and vegetation echoes are not perfect. This means that echoes from vegetation that is very 

low and close to the terrain can sometimes be classified as ground echoes (Sithole and Vosselman, 

2003). Because of these three main reasons, the raw lidar heights are often systematically lower than 

the true height (Næsset 2004). Næsset & Nelson (2007) and Thieme et al. (2011) showed this in their 

studies of pioneer tree detection in the forest tundra ecotone.  

2.4.3 Classification of habitat 

The physical environment of where organisms reside is normally defined to be the habitat of that 

organism. Detecting the habitat of an organism is important for understanding which requirements 

an organism has in order to live in an environment. It is also important for monitoring the species if a 

specific habitat is already known to be important for the survival of the species. Specific tree species 

can make up habitats for specific species, and tree species recognition by remote sensing is well-

studied (Fassnacht et al., 2016). Species that are depending on older forests are often negatively 

affected by forest management (Paillet et al., 2010), and lidar has been found to be able to detect old-

growth natural forests from managed forests (Sverdrup-Thygeson et al. 2016). Dead and decaying 

trees are important for biological diversity in forest ecosystems (Stokland et al., 2012, Sverdrup-

Thygeson et al., 2016). During their decomposition, dead trees offer habitats for thousands of species, 

and today there are between 400 000 and 1 million wood-inhabiting species in the world, in particular 

insects and fungi (Stokland et al., 2012). Lidar has been found to detect both standing and laying dead 

wood in a forest (Pesonen et al., 2008, Martinuzzi et al., 2009). 
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2.5 Strengths and weaknesses with airborne lidar compared to other techniques 

Because of the many applications of lidar, it is important to state that the technique has both strengths 

and weaknesses. Table 1 summarizes the benefits and the drawbacks of using airborne lidar as 

previously mentioned in the chapter. 

One of the often mentioned drawbacks with lidar is the high costs of acquiring data. However, data 

acquisition cost should be evaluated also with regard to the value of the information derived. This is 

might be more difficult in assessing biodiversity than in assessing other natural resources like timber 

(Eid et al., 2004). However, during the last decade, national programs for acquiring data has been 

initialized in several countries including Denmark, Finland, Norway and Sweden. In Denmark and 

Sweden repeated flights are planned and conducted. The data is also mostly open and freely available 

making the use of this data easier in the assessment of biodiversity. In Norway, the national lidar 

scanning campaign is planned to finalize in 2022, but already much of the forested areas is covered 

with lidar. All lidar projects in the national scanning is available through www.hoydedata.no. In 

addition, some historical datasets are published here. However, for older public and private 

acquisitions information might be available from the mapping authorities, municipalities and forest 

associations. 

Table 1 Strengths and weaknesses with using the airborne lidar.  

Strengths Weaknesses 

 

● Active sensor, which means that data can be 

acquired any time of day.  

● Acquired data is also consistent irrespective 

of sun angle. 

● Large area coverage  

● High resolution, three-dimensional point 

data with high precision. The data can be 

adapted to any spatial scale. 

● Represents vertical and horizontal structures 

● Can be used to model the terrain features 

● Can be combined with other data sources 

● Easy to adapt area of basic observation unit 

 

 

● Acquisitions can be hampered by weather 

conditions (rain, fog) 

● Penetrates low vegetation - difficult to detect 

short vegetation close to the ground 

● Difficult to derive an accurate representation 

of the terrain if the canopy is extremely dense. 

An inaccurate terrain model will result in less 

accurate vegetation heights. 
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3 Review 

3.1 Material and methods 

3.1.1 Study selection 

The literature search was conducted September 19th 2018 in the database ISI Web of Science with this 

combination of terms: 

(Laser OR (lidar OR (light AND Detection AND Ranging)) OR (als OR (airborne AND laser AND 

scanning))) AND forest* AND (biodiversity OR diversity OR richness OR ecolog* OR species OR 

habitat). 

The search was performed under “Topic”, and there were no restrictions with regard to year or 

language. The words in the search term were chosen to represent the review study and to minimize 

the probability of excluding relevant studies. The first part of the search term reflect the remote 

sensing that we considered to be relevant for the review. The second and third part reflect that we 

wanted to include studies from forest ecosystems that analysed biological diversity within forests. Our 

combination of search terms were selected with the intention of capturing studies that have 

quantified the relationship between environmental variables – as quantified by lidar – and at least one 

of the following: 

1) Direct measures of biological diversity, either for: 

         i) a single species (presence/absence or abundance) 

ii) a taxonomic or functional group of species 

iii) multiple groups (taxonomic of functional) of species 

2) Indirect measures of biological diversity (habitat/vegetation structure/dead wood). 

Biological diversity can be measured and characterized in many different ways (Magurran and McGill, 

2011). Studies that use one or more groups of species as the biological diversity response variable, 

typically use various biological diversity indices (e.g., species richness, Simpson’s diversity, Shannon 

diversity), aiming to reduce the often complex details of the relative abundance of species in a defined 

area or ecosystem to a single number. 

The search resulted in 1897 articles. This number of studies were further reduced according to certain 

criteria in a more detailed scrutiny of each study. 1) Title, abstract and keywords of each article were 

examined to remove irrelevant studies. 2) Review studies and studies written in other languages than 

English were not included in the filtered reference library. 3) Studies that only used ground-based lidar 

(terrestrial laser scanning; TLS) and not aerial or spaceborne lidar as their predictor data were 

excluded from the list. The rationale behind this is that TLS operate on a smaller scale, and the data 

from these systems cannot be used to make large-area distribution maps. 

When scanning the titles, abstracts and keywords of the papers, we also classified the papers into 

three main categories according to the type of biological diversity response variable reported; single 

species (ca. 100 papers), multiple species (pooling categories ii and iii) and “habitat” (ca. 30 papers). 
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It was not possible within the available period to extract quantitative information from all the studies. 

Therefore, we first prioritized the papers with multiple species response variables, as this is a more 

direct measure of biological diversity than “habitat” response variables. Single species – although they 

contribute to biological diversity – contribute less to the total diversity than multiple species, and 

these papers were not reviewed. The ca. 30 papers with “habitat” as response variables were 

reviewed after we had completed the review of the papers with multiple species response variables, 

following a slightly simpler procedure of data extraction and data compilation (see 3.1.4).  

From the filtered reference library, the full text was examined to find studies for data extraction that 

fulfilled these criteria: 

1. Had forest as the studied habitat or as one of the habitats that were examined 

2. Used aerial or spaceborne lidar or lidar and other remote sensing indicators as predictor 

variables 

3. Had one or more measures of biological diversity as the dependent (response) variable(s).  

4. Reported quantitative information on effect size - i.e. on the strength and direction of the 

relationship (e.g. R2, r, parameter estimates, variable importance, etc.) between biological 

diversity and lidar predictors  

The final reference library consisted of 36 studies that were further used for data extraction and meta-

database compilation.  

 

3.1.2 Data extraction, categorization and compilation 

Although we suspected that the 36 studies would not provide sufficient data for an analysis, we 

proceeded to designing a meta-database, following the procedure described in Koricheva et al. (2013). 

For each study, we extracted and tabulated quantitative data on effect sizes – i.e. the magnitude and 

direction of relationships(s) between the dependent biological diversity variable(s) and predictors 

(lidar, other remote sensing, and other environmental predictors). We also included study identity, 

sample size(s) and information that coded each study for variables, which we had reason to believe, 

could affect the outcome of each study, or whose possible influence on effect size we wished to 

investigate. This included study design, taxonomic information on the studied species, geographic 

location of the studied population, size of the study area, habitat (forest) type and lidar sampling 

methodology. We also extracted information on type of dependent variable (measures of biological 

diversity) and relevant subgroups, as well as model predictors (lidar and other remote sensing 

variables, other environmental variables; Table 2).  

Because our initial searches and selected search terms generated a large number of matches, we were 

optimistic about getting enough data for a meta-analysis. However, after screening of the literature it 

became clear that we did not have enough data. During the process of extracting quantitative 

information from the individual papers, we also realized that in order to carry out a meta-analysis of 

studies using lidar variables to describe or predict biological diversity patterns, there are also some 

methodological challenges that needs to be dealt with, which are not described in the meta-analysis 

literature (see Discussion). 



23 

 

Table 2 Information extracted from each study. Not all studies had every type of information listed. 

Study  − First author 
− Publication year 
− Study title 

Study area  − Country 
− Geographic region name 
− Latitude and longitude (mid-point of geographic region if these were not 

listed) 
− Size of study area 
− Habitat type 

Study unit (ecological 
data)  

− Taxonomic group(s) and sub-groups 
− Biological diversity metric(s) 
− Sample size (number of survey plots, etc.) 
− Number of species in the study 
− Number of individuals sampled in the study 
− Study year and time of year for data sampling in field 
− Sampling system (systematic, stratified random, random) 
− Data source (research, national data) 

Lidar data  − Study year and time of year for data sampling 
− Sensor type 
− Pulse density / return density 
− Flying height 
− Scan angle 
− Data source (research, national) 
− GNSS type and accuracy 

Other remote sensing  − Study year and time of year for data sampling 
− Type (sensor type, Landsat 5 TM, Quickbird, SPOT-5)  
− Spatial scale  
− Data source (research, other) 

Effect size and model 
info 

− Model type (GLM, Pearson’s etc.) 
− Model (which variables it included etc.) 
− Model significance 
− Model intercept + SE 
− Model quality (AIC, BIC or R2) 
− Effect size measures (R2, r, parameter estimates, variance explained) and 

associated variance 

Model variables  − Model response (dependent) variable (species richness, species diversity 
etc.) 

− Model predictor variable name 
− Predictor variable class (See Table 3 concerning predictor variables) 
− Predictor variable class category (See Table 3 concerning predictor variables) 
− Predictor model estimate + SE  
− Predictor model estimate significance 
− Pearson’s correlation coefficient r 

Model validation  − Validation model type (K-fold cross validation, leave one out validation) 
− Validation model parameter type (RMSE, R2) 
− Validation model parameter estimate 
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We decided to continue the data extraction from all the 36 papers and complete the database, even 

though the magnitude did not support a meta-analysis. The rationale for completing the time-

consuming process of extracting and compiling data from the original papers, rather than jumping 

directly to writing a narrative review, was that we wanted to identify the knowledge gaps, to guide 

future studies/recommendations.  

When extracting data from original papers, we searched the main text, tables and figures, as well as 

any supplementary information. Meta-analysis is based on expressing the outcome of each study on 

a common scale. This measure of outcome, which we here define as an effect size, includes 

information on the direction and magnitude of an effect of interest (e.g., biological diversity) from 

each study. When the association between two continuous variables is of interest, such as between 

biological diversity and a continuous predictor, Pearson’s correlation coefficient, r, is commonly used 

as an effect size measure in ecological meta-analyses (e.g. Koricheva et al., 2013). Effect size is simply 

a way of quantifying the strength and sign of a relationship between two variables, without 

confounding this with sample size. In original research studies, regression – or multiple regression – 

techniques are often used to assess the relationship between one or more lidar-variables and 

biological diversity. In theory, essentially the same approach could be used with meta-analysis, except 

that the predictors (e.g. lidar-variables) are at the level of the study rather than the level of the study 

subject, and the biological diversity response is the effect size in the studies rather than subject scores. 

This approach is called a meta-regression. Meta-regressions use weighting based on the precision of 

the estimate of the effect: larger studies with higher precision are weighted more heavily than smaller 

and/or more variable.  

 

Figure 3 A hypothetical ‘bubble’ plot showing a line 

predicted from a meta-regression analysis; the sizes 

of the bubbles reflect the sample sizes of the 

individual studies (adapted from Gurevitch et al. 

2018). This type of plot may be used to assess the 

influence of continuous predictors (also called 

moderators; see Koricheva et al., 2013).  

We endeavoured to extract effects sizes from all the 36 studies. Ideally, one should choose an 

appropriate effect size and moderators (predictors) before the data extraction process starts 

(Koricheva et al., 2013). However, our initial screening of the papers revealed that the reporting of 

effects sizes and predictors varied a lot between papers. Therefore, we took a broader approach and 
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tabulated all the information that we could find about effects sizes (any measures of the magnitude 

and sign of the association between biological diversity and predictors (lidar predictors, other remotes 

sensing predictors and other environmental predictors), sample sizes and the variance of the effect 

sizes. 

In addition to common problems in meta-analysis, such as lack of information about sample size 

and/or the variance of the effect size, we found it challenging that the association between biological 

diversity and predictors were quantified in many different ways (i.e., different statistical models and 

test statistics), with a plethora of predictors. Compared to traditional, typically field based or climate 

predictors, the number of candidate lidar and other remote sensing variables is large. Some studies 

use single lidar variables as predictors, whereas others group lidar variables into composite predictors 

that describe some hypothesized important attribute of the habitat. However, there is little 

consistency among papers with respect to how this grouping of lidar variables is carried out. 

Furthermore, for lidar variables, or groups of lidar variables, which are not included as predictors in 

the published models, it is often not clear whether they were explored and found to be unimportant 

or not explored at all. Although multiple alternative models are often reported in the same paper (see 

supplementary material Table A1), it is often not clear what the difference in explanatory or predictive 

power is between the alternative models, which makes is difficult to infer the benefit of including lidar 

and other remote sensing variables as predictors. Another important challenge when assessing the 

association between biological diversity and (lidar) predictors is that usually only the influence of the 

predictors – conditional on the other predictors in the model – are reported, i.e. not single-variable or 

variable-group ‘effects’ on biological diversity. 

The challenges described above were discovered relatively early in the process. It took us longer to 

realize that one of the reasons why there was so much variation among the studies in effect size 

measures is that they differ fundamentally with respect to the overall modelling approach; some 

studies have conducted explanatory/descriptive modelling, whereas others have carried out 

prediction modelling approaches (see Discussion). In hindsight, we realize that this should have been 

systematically scored in the meta-database, but this was not done. 

In order to detect some general patterns with respect to the association between biological diversity 

and lidar predictors, we categorized the lidar variables used in different studies and models into five 

groups that correspond to different ecologically relevant features of the vegetation structure and four 

groups that reflect important topographic features (Table 3). 
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Table 3 Predictor variable categories used in the data compilation 

Lidar vegetation structure 

Height The height of the forest. Canopy height, understory height, mid-story height etc. 

Var Variation of lidar echo height distribution 

Density Measures describing the density of the forest (crown coverage, layers, number of 
stems) 

Intensity Variables computed from the recorded intensity of lidar echoes. 

Horizontal Variables computed to describe horizontal patterns (gaps, patches etc. often 
computed from nDSM) 

Lidar topography 

Elevation Elevation of the sample 

Slope Slope of the sample 

Aspect Compass direction of slope 

Wetness The wetness of the area based upon the slope of the DTM 

Climate 

Temperature All temperature based variables 

Precipitation All precipitation based variables 

Solar radiation All solar radiation variables 

Plant All variables that were related to plants and was not sampled by remote sensing. 
Can be tree classes, number of species etc. 

Soil Variables within here could be pH, soil moisture etc. 

Other remote sensing 
(Optical) 

Invariably spectral. NDVI, other measurements of wavelengths 

 

3.1.3 Data exploration and analysis 

In primary studies, we need an appropriately large ratio of subjects to covariates (predictors) in order 

for the analysis to be meaningful. Likewise, in meta-analysis we need an appropriately large ratio of 

studies to predictors. The use of meta-regression, especially with multiple predictors, is not a 

recommended option when the number of studies is small (Borenstein et al., 2011). In primary studies, 

some have recommended a ratio of at least ten subjects for each covariate, which would correspond 

to ten studies for each predictor in meta-regression (Borenstein et al., 2011). From this, and the 

description of the meta-database in previous sections, it is clear that a meta-regression was not a good 

option. 
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Based on the meta-database spreadsheet, we compiled the 36 reviewed studies in a table 

(supplementary Table A1), in which we included multiple types of information. These were geographic 

location, forest habitat type, size of study area, study design, lidar methodology (sampling season, 

lidar campaign, sensor type, pulse density, return density), species group, biological diversity measure 

and broad categories of model predictors (lidar vegetation structure, lidar topography, other remote 

sensing, other environmental variables).  

In an attempt to detect some general patterns about which lidar variables that can be used to model 

or map biological diversity, we focused on studies that have used biological diversity of birds as 

dependent variable (Table 4). The rationale for focusing on birds is that this was the taxon, for which 

we found the largest number of studies (16 of 36). In addition, field-based studies of birds have 

revealed that the three-dimensional arrangement of the habitat strongly influences bird habitat use 

(Macarthur and Macarthur, 1961, Brokaw and Lent, 1999). For forest-dwelling birds, the three-

dimensional structural complexity of the forest (i.e., canopy height, stem density and tree species 

composition), influences the presence of single bird species as well as bird richness (Macarthur and 

Macarthur, 1961, Karr and Roth, 1971, Willson, 1974, Holmes and Robinson, 1981, Peck, 1989). 

 

3.1.4 Data extraction and data compilation - studies using “habitat” as response variable 

For the papers using “habitat” as the response variable, we selected those that concerned different 

types of forest habitats or forest habitat attributes like forest successional stages or dead wood. In 

total, we found 23 papers that we could extract data from (Table 5). Papers dealing with classification 

of forest versus non-forest habitats were not included in this review. Based on our experience from 

reviewing the 36 papers using multiple species response variables (see above), we decided to reduce 

the level of detail in the data extraction when reviewing the “habitat” papers. We also decided to 

score all papers with respect to whether they reported results from prediction models or not. We 

extracted the following information from each paper: response variable (forest type/forest attribute 

(including dead wood)), lidar predictors/explanatory variables, other remote sensing 

predictors/response variables, country, latitude, longitude, sample size, sample scale, study area size, 

and modelling approach (prediction modelling/other statistical modelling). For the prediction 

modelling papers, we also extracted the predictive power (PP) of the models and categorized them as 

either: excellent, good, fair, poor, bad, fail. The categories were adapted from the recommendations 

of Swets (1988) on interpreting range values. The interval values between 0 and 1 and categories are 

here: excellent PP > 0.9; good 0.9 < PP > 0.8; fair 0.8 < PP > 0.7; poor 0.7 < PP > 0.6; bad 0.6 < PP > 0.5; 

fail PP < 0.5.  
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3.2 Results 
In total, we extracted information from 36 studies having biological diversity as the response variable 

and 23 habitat studies that had lidar variables as model predictors. The spatial location of the studies 

is scattered across the globe (Figure 4). The majority of the studies have been carried out in North 

America and Europe. 

For the biological diversity studies, mobile mid and stationary taxa were most commonly used as 

response variables with 14 and 13 studies, respectively (Figure 5a). Studies looking at forest types 

were most common when studying forest habitats (17 studies) and five studies had dead wood as the 

habitat. All the reviewed studies were published between 2007 and 2018 where 60 % of the studies 

were published between 2015-2018 (Figure 5b). 

 

 

3.2.1 Biological diversity studies 

The 36 reviewed studies - which used one of more measures of biological diversity as response variable 

- spanned a broad range of geographic locations, spatial scales, forest types and taxonomic groups 

(Figure 4; supplementary material A1). The majority of the studies used species richness as dependent 

variable (i.e., measure of biological diversity; see the column “BiolDivMetric” in supplementary 

material A1).  

Of the 36 studies that were reviewed, 16 assessed the association between bird diversity and lidar 

predictors, and 14 of these used species richness of birds as dependent variable (Table 4). Sample size 

and number of species in the bird communities varied among studies. The capability of lidar and other 

predictors to explain variation in bird species richness/diversity was modelled in many different ways 

and with many different predictors. Lidar-derived vegetation structure variables quantifying tree 

density and mean tree height occurred in many of the models. Some models also included variables 

quantifying variability in tree height, and a few included horizontal tree cover. The lidar “topography” 

variables elevation and slope occurred in many of the models. Only three of the bird studies report 

the use of predictors derived from other types of remotely sensed data (optical). 
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Figure 4 Location of biological diversity (circles) and habitat (triangles) studies using lidar variables as predictors. The biological diversity studies are categorized by mobility 

and size. The category “Mobile large” represent mammals. “Mobile mid” are birds, bats and amphibians. “Mobile small” are insects, spiders and snails. “Stationary” species 

represent vascular plants, bryophytes, lichens and fungi. Habitat studies are categorized by studies looking at specific forest types and studies examining dead wood with 

lidar. The term “global” behind two of the categories represent studies using global data. Multiple studies had the same geographical coordinates, and the point localities 

are therefore adjusted so that each point is viewable on the map. 
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(a) 

 

(b) 

 

Figure 5 Number of publications per study type and year. (a) Number of publications per study type and their categories. The term “global” behind two of the categories 

represent studies using global data. (b) Temporal trends for biological diversity and habitat studies. The bars represent the total number of publications per year divided into 

the two study types
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Table 4 Studies that have quantified the relationship between biological diversity of birds and one or more lidar predictors. Response is the biological diversity measure 

(dependent variable). Many of the studies also include models for sub-groups of birds (typically various foraging or nesting guilds), but only relationships for the whole bird 

community in each study are listed here. Under predictors, the different models that were listed in each study are separated with the symbol “;”. Optical = spectral remote 

sensing predictors. Effects size type and size for the relationships between the dependent variable and the model predictors are not shown, because effect size type varied 

among studies (i.e., r, variable importance, parameter estimates, R2), and the figures are not comparable among studies, due to different effects size types and modelling 

approaches used (predictive/explanatory/descriptive). 

Habitat Response Predictors (LIDAR VEGETATION, LIDAR TOPOGRAPHY, climate, Optical) Country Sample size Reference 

Boreal Species richness DENSITY Norway 148 plots,  

25 species 

Eldegard et al. (2014) 

Boreal Species richness DENSITY; HEIGHT Sweden 47 plots Lindberg et al. (2015) 

Mixed Species richness DENSITY ; HEIGHT ; HORIZONTAL ; VAR Germany 50 plots Renner et al., (2018) 

Mixed habitat3 Species richness Aspect ; Aspect + SLOPE + Soil ; 

Aspect + SLOPE + Soil + HEIGHT / DENSITY / VAR ; 

DENSITY ; HEIGHT / DENSITY / VAR ; Precipitation ; 

Solar radiation ; Temperature ; 

Temperature + Precipitation + Solar radiation ; 

Temperature + Precipitation + Solar radiation + ASPECT + SLOPE + Soil ; 

Temperature + Precipitation + Solar radiation + ASPECT + SLOPE + Soil + 

HEIGHT / DENSITY / VAR ; 

Temperature + Precipitation + Solar radiation + HEIGHT / DENSITY / VAR 

Switzerland 520 plots,  

92 species 

Zellweger et al. (2016) 

Mixed habitat3 Beta diversity ASPECT ; HEIGHT ; Precipitation ; SLOPE ; Soil ; Temperature ; VAR   520 plots,  

144 species 

Zellweger et al. (2017) 

Mixed1 Species richness DENSITY ; HEIGHT ; VAR ; Precipitation ; Temperature Canada 1656 sites Coops et al. (2016) 
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Table 4 cont.      

Habitat Response Predictors (LIDAR VEGETATION, LIDAR TOPOGRAPHY, climate, Optical) Country Sample size Reference 

Multiple Species richness HEIGHT ; Optical ; Precipitation ; Temperature USA & Canada 118 plots,  

56 species 

Lesak et al. (2011) 

Mixed conifer Species richness DENSITY ; DENSITY + HORIZONTAL + Optical ; DENSITY + Optical ; 

ELEVATION ; HEIGHT + DENSITY ;  

HEIGHT + DENSITY + HORIZONTAL + SLOPE + ELEVATION + Optical ; 

HEIGHT + DENSITY + Optical ; 

HEIGHT + DENSITY + SLOPE + ELEVATION + HORIZONTAL ; 

HEIGHT + DENSITY + SLOPE + ELEVATION + Optical ; 

HORIZONTAL ; Optical ; SLOPE  

SLOPE + ELEVATION ; VAR 

USA 164 plots,  

65 species 

Vogeler et al. (2014) 

Mixed conifer2 Species richness DENSITY ; HEIGHT ; Plant ; Plant + HEIGHT ; 

Plant + HEIGHT + DENSITY ; Plant + VAR ; VAR 

  130 plots Swift et al., (2017) 

Mixed Species diversity DENSITY   51 plots,  

43 species 

Clawges et al. (2008) 

Mixed Species richness DENSITY ; HEIGHT ; VAR   118 plots,  

56 species 

Lesak et al. (2011) 

Decidious Shannon diversity DENSITY ; HORIZONTAL England 28 species Melin et al. (2018) 

  Species richness DENSITY ; HORIZONTAL       

Evergreen 4 Species diversity DENSITY ; Ground Height ; HEIGHT ; VAR Japan 13 plots Sasaki et al. (2016) 
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 Table 4 cont.         

Habitat Response Predictors (LIDAR VEGETATION, LIDAR TOPOGRAPHY, climate, Optical) Country Sample size Reference 

 Species richness DENSITY ; Ground Height ; HEIGHT ; VAR    

Evergreen 5 Bird community DENSITY ; ELEVATION ; HEIGHT ; HEIGHT + DENSITY ; Optical Ecuador 30 plots,  

147 species 

Wallis et al. (2016) 

  Phylo-diversity DENSITY ; ELEVATION ; HEIGHT ; HEIGHT + DENSITY ; 

Optical ; SLOPE 

      

  Shannon diversity HEIGHT + DENSITY   30 plots,  

147 species 

  

Kipuka Species richness HEIGHT ; VAR ; Optical   18 plots,  

11 species 

Flaspohler et al. (2010) 

Multiple Species richness HEIGHT ; Plant ; Precipitation ; Temperature Global  12904 plots Roll et al. (2015) 

1Coniferous forest, deciduous forest, mixed forest, grassland, and shrubland; 2Aspen, mixed aspen-conifer, and conifer forest; 32/3 other & 1/3 forest (Forest: 43 % 

coniferous, 33 % mixed, 24 % broadleaved); 4Evergreen broad-leaved forest; 5Evergreen lower and upper montane forest
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Table 5 Compilation of studies that have used lidar variables or lidar in combination with spectral remote sensing (RS) variables to predict forest habitat types or forest 

habitat attributes. Variables in bold are remote sensing variables. Lidar predictors (see Table 3 for explanation) are shown in colours: green = lidar vegetation structure, 

brown = lidar topography. Optical (in red) = spectral remote sensing predictors. The predictive power (PP) of each prediction model ranging between 0 and 1 is indicated as 

Excellent (PP > 0.9), Good (0.9 < PP > 0.8), Fair (0.8 < PP > 0.7), Poor (0.7 < PP > 0.6), Bad (0.6 < PP > 0.5) or Fail (PP < 0.5). -- indicates no reported predictions. 

Forest type/attribute (response) Other RS Predictors Prediction Reference 

6 classes of successional stages No density + height Excellent Falowski et al. 2009 

7 classes of successional stages No density + height Excellent Falowski et al. 2009 

Open stem exclusion No density + height Excellent Falowski et al. 2009 

Stand initation No density + height Excellent Falowski et al. 2009 

Young multistory No density + height Excellent Falowski et al. 2009 

Mature multistory No density + height Excellent Falowski et al. 2009 

Stand initation No density + height Excellent Falowski et al. 2009 

Young multistory No density + height Excellent Falowski et al. 2009 

Old multistory No density + height Excellent Falowski et al. 2009 

Short, open canopy stand No var + density Excellent Guo et al. 2017 

Tall, dense canopy cover stand No var + density Excellent Guo et al. 2017 

Very tall, closed canopy stand No var + density Excellent Guo et al. 2017 

Semi-evergreen forest Landsat ETM+ slope + wetness + solar radiation Excellent Martinuzzi et al. 2012 

Forest Landsat ETM+ slope + elevation + distance to coast + var + density + height + wetness Excellent Martinuzzi et al. 2012 

Scrub forest Landsat ETM+ slope + elevation + distance to coast + var + density + height + wetness Excellent Martinuzzi et al. 2012 

Semi-deciduous forest Landsat ETM+ slope + elevation + distance to coast + var + density + height + wetness Excellent Martinuzzi et al. 2012 

Semi-evergreen forest Landsat ETM+ slope + elevation + distance to coast + var + density + height + wetness Excellent Martinuzzi et al. 2012 

Mesquite forest Landsat ETM+ slope + elevation + distance to coast + var + density + height + wetness Excellent Martinuzzi et al. 2012 

Broadleaved trees Quickbird optical + topography   + height + var + intensity Excellent Onojeghuo et al. 2017 

Coniferous trees Eagle MNF optical + topography  + height + var + intensity Excellent Onojeghuo et al. 2017 

Old near-natural boreal No var + horizontal Excellent 
Sverdrup-Thygeson et al. 
2016 

Stand initiation Leica ADS-40 height + optical Excellent Zhang et al. 2017 

Young multistory Leica ADS-41 height + optical Excellent Zhang et al. 2017 

Old growth Leica ADS-43 height + optical Excellent Zhang et al. 2017 
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Table 5 cont.     

Forest type/attribute (response) Other RS Predictors Prediction Reference 

Quercus spp. Landsat 8 OLI slope + height + optical + temperature + precipitation Good Álvarez-Martínez et al. 2017 

Luzulo-Fagetum beech  No height + var + density + elevation + solar radiation Good Bässler et al. 2011  

Understory initiation No density + height Good Falowski et al. 2009 

Old multistory No density + height Good Falowski et al. 2009 

Open stem exclusion No density + height Good Falowski et al. 2009 

Understory initiation No density + height Good Falowski et al. 2009 

Scrub forest Landsat ETM+ var + height + density + horizontal Good Martinuzzi et al. 2012 

Mesquite forest Landsat ETM+ slope + wetness + solar radiation Good Martinuzzi et al. 2012 

Forest Landsat ETM+ slope + density + var + height + wetness + horizontal Good Martinuzzi et al. 2012 

Scrub forest Landsat ETM+ slope + density + var + height + wetness + horizontal Good Martinuzzi et al. 2012 

Semi-deciduous forest Landsat ETM+ slope + density + var + height + wetness + horizontal Good Martinuzzi et al. 2012 

Dwarf forest Landsat ETM+ slope + density + var + height + wetness + horizontal Good Martinuzzi et al. 2012 

Semi-evergreen forest Landsat ETM+ slope + density + var + height + wetness + horizontal Good Martinuzzi et al. 2012 

Mesquite forest Landsat ETM+ slope + density + var + height + wetness + horizontal Good Martinuzzi et al. 2012 

Forest Landsat ETM+ slope + var + density + wetness + height + optical + horizontal Good Martinuzzi et al. 2012 

Scrub forest Landsat ETM+ slope + var + density + wetness + height + optical + horizontal Good Martinuzzi et al. 2012 

Semi-deciduous forest Landsat ETM+ slope + var + density + wetness + height + optical + horizontal Good Martinuzzi et al. 2012 

Dwarf forest Landsat ETM+ slope + var + density + wetness + height + optical + horizontal Good Martinuzzi et al. 2012 

Semi-evergreen forest Landsat ETM+ slope + var + density + wetness + height + optical + horizontal Good Martinuzzi et al. 2012 

Mesquite forest Landsat ETM+ slope + var + density + wetness + height + optical + horizontal Good Martinuzzi et al. 2012 

Dwarf forest Landsat ETM+ slope + elevation + distance to coast + var + density + height + wetness Good Martinuzzi et al. 2012 

Old near-natural boreal No horizontal Good 
Sverdrup-Thygeson et al. 
2016 

Old near-natural boreal No var + horizontal Good 
Sverdrup-Thygeson et al. 
2016 

Old near-natural boreal No var + height + density Good 
Sverdrup-Thygeson et al. 
2016 

Old near-natural boreal No horizontal Good 
Sverdrup-Thygeson et al. 
2016 
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Table 5 cont     

Forest type/attribute (response) Other RS Predictors Prediction Reference 

Vascular plant community composition 
hyperspectral 
G-LiHT Composite remotely sensed predictors derived by ordination techniques 

Good-Fair 
Hakkenberg et al. 2018 

Sub-Atlantic & medio-European 
oak/oak-hornbeam 

Landsat 8 OLI solar radiation + height + precipitation + aspect + optical + elevation + slope Fair Álvarez-Martínez et al. 2017 

Galicio-Portuguese oak (Quercus spp.) Landsat 8 OLI height + precipitation + optical + temperature + elevation Fair Álvarez-Martínez et al. 2017 

Acidophilous Picea  No height + var + density + elevation + solar radiation Fair Bässler et al. 2011 

Closed stem exclusion No density + height Fair Falowski et al. 2009 

Short, medium canopy cover stand No var + density Fair Guo et al. 2017 

Very short, dense canopy cover stand No var + density Fair Guo et al. 2017 

Very tall, complex stand No var + density Fair Guo et al. 2017 

Short, closed canopy stand No var + density Fair Guo et al. 2017 

Semi-deciduous forest Landsat ETM+ var + height + density + horizontal Fair Martinuzzi et al. 2012 

Semi-evergreen forest Landsat ETM+ var + height + density + horizontal Fair Martinuzzi et al. 2012 

Semi-deciduous forest Landsat ETM+ slope + wetness + solar radiation Fair Martinuzzi et al. 2012 

Coniferous trees Quickbird optical + topography  + height + var + intensity Poor/Fair/Bad Onojeghuo et al. 2017 

Broadleaved trees Eagle MNF optical + topography  + height + var + intensity Fair/Poor/Bad Onojeghuo et al. 2017 

Seven forest vegetation types 
multispectral 
aerial imagery  

Fair Su et al. 2016 

Old near-natural boreal No density + height + var Fair 
Sverdrup-Thygeson et al. 
2016 

Understory Reinitation Leica ADS-42 height + optical Fair Zhang et al. 2017 

Mature multistory No density + height Poor Falowski et al. 2009 

Understory shrub cover (pres/abs) No density + slope * aspect Poor Martinuzzi et al. 2009 

Forest Landsat ETM+ var + height + density + horizontal Poor Martinuzzi et al. 2012 

Four forest vegetation types 
multispectral 
aerial imagery  

Poor Su et al. 2016 

Atlantic acidophilous beech Landsat 8 OLI 
height + elevation + temperature + aspect + optical + precipitation + solar 
radiation 

Bad Álvarez-Martínez et al. 2017 

Castanea sativa Landsat 8 OLI height + optical + elevation + temperature + wetness + precipitation Bad Álvarez-Martínez et al. 2017 
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Table 5 cont.     

Forest type/attribute (response) Other RS Predictors Prediction Reference 

Quercus suber Landsat 8 OLI 
precipitation + height + optical + slope + precipitation + solar radiation + 
elevation 

Bad Álvarez-Martínez et al. 2017 

Bog woodland No height + var + density + elevation + solar radiation Bad Bässler et al. 2011 

Mesquite forest Landsat ETM+ var + height + density + horizontal Bad Martinuzzi et al. 2012 

Forest Landsat ETM+ slope + wetness + solar radiation  Bad Martinuzzi et al. 2012 

Dwarf forest Landsat ETM+ slope + wetness + solar radiation Bad Martinuzzi et al. 2012 

Medio-European limestone beech Landsat 8 OLI height + temperature + precipitation + optical + aspect Fail Álvarez-Martínez et al. 2017 

Alluvial: Alnus glutinosa & Fraxinus 
excelsior 

Landsat 8 OLI height + wetness + temperature + elevation + wetness + slope Fail Álvarez-Martínez et al. 2017 

Iberian oak (Quercus spp.) Landsat 8 OLI height + temperature + precipitation + slope + elevation + optical + aspect Fail Álvarez-Martínez et al. 2017 

Salix alba & Populus alba galleries Landsat 8 OLI wetness + elevation + height + optical + precipitation + aspect + slope Fail Álvarez-Martínez et al. 2017 

Ilex aquifolium Landsat 8 OLI height + wetness + solar radiation + temperature + optical + slope Fail Álvarez-Martínez et al. 2017 

Asperulo-Fagetum beech  No height + var + density + elevation + solar radiation Fail Bässler et al. 2011 

Very tall, open canopy stand No var + density Fail Guo et al. 2017 

Dwarf forest Landsat ETM+ var + height + density + horizontal Fail Martinuzzi et al. 2012 

Scrub forest Landsat ETM+ slope + wetness + solar radiation Fail Martinuzzi et al. 2012 

9 wildlife tree classes No var -- Bater et al. 2009 

Measure of vertical forest structure No Not explicitely stated Prediction maps Dees et al. 2012 

Forest structural diversity No height Fair-Poor Mura et al. 2015 

Classification of grizzly bear habitat 
multispectral 
images height + density + optical 

Fair classification of 
habitat 

Nijland et al. 2015 

Giant trees (rainforest) No height + density + global scale climate data -- Scheffer et al. 2018 

spatially explicit ecological condition 
model (ECM) No -- 

-- 
Trager et al. 2018 

Boreal forest stands with high 
herbaceous plant diversity No height + intensity 

Intermediate−high 
classification 
accuracy 

Vehmas et al. 2009 

Seven plant communities WV2 topography   -- Wendelberger et al. 2018 

Dead standing Eucalyptus  var + horizontal Methodological Miltiadou et al. 2018 
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Table 5 cont.     

Forest type/attribute (response) Other RS Predictors Prediction Reference 

Downed trees No topography   Fair Mücke et al. 2013 

Downed logs   Fair Blanchard et al. 2011 

Snags > 15 cm diameter No forest succession + wetness + height + topography   Fair Martinuzzi et al. 2009 

Snags > 25 cm diameter No 
forest succession + aspect + wetness + height + topography  + density + 
elevation 

Fair Martinuzzi et al. 2009 

Snags > 30 cm diameter No forest succession + density + height + aspect + topography   Fair Martinuzzi et al. 2009 

Coarse woody debris (CWD); downed 
dead wood & standing dead wood No height + intensity 

Fair-Poor Pesonen et al. 2008 

Snags > 15 cm diameter No height Bad Martinuzzi et al. 2009 

Snags > 30 cm diameter No topography  + height Bad Martinuzzi et al. 2009 

Snags > 25 cm diameter No height Fail Martinuzzi et al. 2009 
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3.3 Discussion 

There is no one metric that perfectly quantifies biological diversity, and there is no single index that 

will suit all needs. The ability to examine biological diversity in different ways, will not only help us 

gain better understanding of how ecosystems function, but also sheds light on issues of practical 

concern such as the link between diversity and ecosystem services and ecological state. However, the 

large majority of studies that have related biological diversity to lidar predictors include only 

information on the presence and abundance of species, and the majority use species richness 

(presence only) as dependent variable. Species richness is the iconic measure of biological diversity, 

but it contains no information about the abundance of species. Two areas with exactly the same 

number of species may have no species in common and thus a completely different community 

composition. Studies relating lidar variables (i.e., proxies for habitat) to changes in community 

composition are scarce. Furthermore, few studies have related lidar variables to measures of 

functional diversity. This is an important knowledge gap that should be filled in order to assess the 

usefulness of lidar to predict ecological state.  

Another challenge when trying to infer general patterns from the studies in our literature search is 

that the distribution of taxonomic groups is heavily skewed (Fig. 4, Table 4). In addition, often a 

functionally constricted group of species has been studied, which should not be used as a surrogate 

of a higher taxonomic group, as this may lead to exaggerated taxonomic generalizations (see Halme 

et al., 2010).  

It is common that original papers have to be excluded from a meta-analysis because information about 

effects size, or about sample size and/or the variance of the effects size, is missing (Borenstein et al., 

2011). Sometimes converting among effect size measures is possible, but often effect sizes from 

different studies are not comparable. In the literature review process, we realized just that with effect 

size metrics that were based on completely different modelling approaches. Two main types of 

statistical modelling are common in ecological studies; explanatory and predictive. Explaining and 

predicting are different, but conflation between explanation and prediction is common in the 

literature. Models of high explanatory power do not necessarily have high predictive power. 

In explanatory modelling, statistical models are applied to data in order to test causal hypotheses. In 

such models, a set of underlying factors that are measured by variables X are assumed to cause an 

underlying effect, measured by variable Y. In contrast, predictive modelling is the process of applying 

a statistical model or data mining algorithm to data for the purpose of predicting new or future 

observations where the goal is to predict the output value (Y) for new observations given their input 

values (X). This includes spatial prediction and temporal forecasting. A predictive model is any method 

that produces predictions, regardless of its underlying approach: Bayesian or frequentist, parametric 

or nonparametric, data mining algorithm or statistical model, and so on. A third type of modelling, 

which is much used in non-experimental studies, is descriptive modelling. This type of modelling is 

aimed at summarizing or representing the data structure in a compact manner. Unlike explanatory 

modelling, in descriptive modelling the reliance on an underlying causal theory is absent or 

incorporated in a less formal way. However, unlike predictive modelling, descriptive modelling is not 

aimed at prediction. Fitting a regression model can be descriptive if it is used for capturing the 

association between the dependent and independent variables rather than for causal inference or for 

prediction. Our literature search was not aimed at differentiating between descriptive and predictive 
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modelling approaches. Studies that have used descriptive modelling approaches do typically not state 

explicitly what type of modelling approach has been used. This was confusing when we tried to extract 

comparable effect sizes. This dawned upon us rather late in the process of constructing the meta-

database, and we did not score the modelling approach systematically. This should be done in future 

studies.  

As documented in the literature research and initial screening of the hits, there are many articles 

concerning the descriptive/prediction modelling of single species (~100 articles). These studies 

typically use presence/absence data to explain or predict the distribution of individual species. These 

were not included in this literature review (i.e. quantitative information was not extracted and 

compiled in a meta-database) due to time constraints. It may be possible to do a meta-regression 

based on these papers, at least if there is a sufficient number of prediction modelling studies on single 

species. The single-species studies that were found in the literature search, but not reviewed in this 

report also include 11 studies, in which individuals animals from a single species have been tagged 

with GPS-transmitters, to understand animal movements and habitat use (e.g. Ciuti et al., 2018, 

Garabedian et al., 2017, Melin et al., 2016, Lone et al., 2014a). 

In addition to having many different measures of biological diversity from different taxonomic groups, 

forest types and geographic regions, a major challenge in trying to extract some general patterns 

about the relationship between biological diversity and lidar-derived variables, is the large number of 

candidate predictors. In prediction modelling, the aim is to maximise prediction and not necessary to 

restrict the number of lidar predictors. In explanatory/descriptive modelling, which is very common in 

ecological studies, the overall goal is to understand the system, and often aim to reduce number of 

predictors (explanatory variables). It may not be realistic to find one or a few good lidar indicators that 

can predict biological diversity in general. In the chapter 3.2 Results and in chapter 4 

Recommendations, we have tried to use our own expertise - with the added insights from this 

literature review - to suggest groups of lidar variables that captures ecologically relevant aspects of 

the forest habitat. Which attributes of the habitat is important, will depend on the habitat 

requirements of the focal taxonomic or functional group. For example, forest birds and dead wood-

associated fungi will have very different habitats requirements. 

As compared to the studies with the response variable being a direct measure of biological diversity, 

a larger proportion of the studies using forest habitat as response were prediction models. Reviewing 

the literature, we found several studies showing that lidar variables can give excellent or good 

predictions of forest habitats, but also many studies where this was not the case. The analysis of 

species–environment relationship has always been a central issue in ecology. Habitat suitability 

models are widely used to quantify species-environment relationships and to predict species 

occurrence and/or density at un-surveyed locations (Welsh et al., 1996, Martin et al., 2005, Heinanen 

et al., 2008). Habitat suitability models are useful in conservation and wildlife management because 

they can identify species distributions and abundances in a spatially explicit way and can support 

planning and decision making, especially over large areas (Guisan and Zimmermann, 2000, Guisan et 

al., 2013). 

There are two common ways to build habitat suitability models; either 1) based on literature review 

and expert opinion, or – if presence-absence data or abundance is available for the species in the study 

area – then 2)  empirical statistical models can be created by relating the species occurrence data to 
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habitat factors. However, habitat suitability models are often based on digital maps that describe the 

environment at a human scale and hence miss ecological structures and features that are important 

for wildlife (Tattoni et al., 2012). Furthermore, predictors that have known impacts on the species of 

interest are measured at the site level but are not available over the large areas at which the models 

need to be applied. Lidar data can fill this gap by providing useful information not only on the spatial 

extent of habitat types but also information on the vertical height. The advantage of lidar derived 

variables lays also in the availability at a large scale, instead of just in the survey sites.   

  

4 Recommendations 
In this chapter, we present recommendations based on the literature review. First, we discuss the 

main findings from the review on potential indicators of biological diversity. We then present expert 

opinion recommendations for lidar-based indicators. Second, we discuss lidar approaches used in the 

reviewed literature and recommendations about data sampling protocols using lidar.  

4.1 Indicators of biological diversity recommendations 

The main aim of the conducted review was to identify indicators of forest biological diversity that 

could be derived from lidar data together with other remote sensing techniques. The limited and 

highly heterogeneous quantitative information from the literature review did not allow for a meta-

analysis, and compilation of the results in tables did not reveal clear patterns that could support 

recommendations about lidar-based indicators. Based on the review results, our recommendations of 

lidar indicators at this stage are preliminary. However, there were some pinpoints from the reviewed 

studies to which indicators that could potentially be used to predict biological diversity on taxa to 

habitat level.  

4.1.1 Forest structure and topography 

Based on the predictor groups in Table 3, we combined the project group members’ knowledge about 

remote sensing and ecology to define ecologically relevant groups of lidar variables. These groups 

were based on ecological knowledge of what forest attributes influence forest biological diversity. The 

predictor groups, or rough indicators, for forest structure are forest density, tree height and variability 

in tree height, i.e as suggested to be derived from lidar in a forest structural habitat index (Coops et 

al., 2016). In addition, topography variables such as elevation, slope, aspect and wetness, which are 

known to be ecologically important, can be derived from lidar. Including optical data can give 

additional information about tree species composition (Dalponte et al., 2012, Naidoo et al., 2012). The 

main advantage of lidar compared to other remote sensing techniques is the three-dimensional 

quantification of the habitat. Forests are three-dimensional vegetation structures, and groups of 

species like birds and bats are known to respond strongly to forest structure.  

4.1.2 Prediction modelling of habitat; indirect prediction of the distribution of organisms, or  

indirect prediction of ecological state  

Lidar and other remote sensing data allows assessing habitat features over large areas (Graf et al., 

2009). This can be used to improve habitat suitability models and hence improve predictive 

distribution modelling of species and groups of organisms. For many species and groups of organisms, 

the question is not whether lidar or other remote sensing data are useful or not, but whether the 
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scientists and managers have the necessary competence for identifying the ecologically relevant lidar 

and other remote sensing predictors. There are considerable methodological challenges related to 

downloading remote sensing data, data management and preparing comprehensible predictors for 

ecologists. A close collaboration is required between remote sensing experts and ecologists with 

limited knowledge about the lidar data acquisition and data management and also systems for dealing 

with data storage of big datasets and data accessibility. 

In addition to assessment of habitat features, lidar and other remote sensing can be used also to derive 

indicators of ecological state. We applied an expert opinion approach, where we made use of our 

existing knowledge about the relationship between lidar and forest structure to suggest lidar-based 

indicators that correspond to field-based existing and proposed indicators of ecological state in the 

ANO system (“arealrepresentativ naturovervåking”; Evju et al., 2018, Nybø et al., 2018). In Evju et al. 

(2018) for the Tables 1 and 3, field-based indicators for current monitoring programmes and future 

programmes are listed. For these forest ecosystem related indicators, we provide expert opinions 

about the potential for using airborne lidar to assess the indicators (Tables 6 and 7). The potential is 

ranked “HIGH”, “INTERMEDIATE” or “LOW”. The category “HIGH” is used when lidar is the primary 

data source for assessment of the indicator, and when little is gained by introducing other data to the 

assessment. This is typically related to indicators related to biophysical properties (height, biomass 

etc.) If the assessment of the indicator benefits greatly from fusion between lidar and for example 

optical data, we have used the category “INTERMEDIATE”, and when lidar data explain very little or 

no variation of the indicator in question, we have used the category “LOW”.  

Table 6 Field-based indicators that are relevant for assessing ecological state, and which are already included in 

an existing area representative monitoring programme; the National Forest Inventory (NFI), with ca. 13 000 

permanent plots in forest ecosystems or tree-covered areas in Norway. We have used an expert opinion 

approach to suggest corresponding lidar indicators. For each of the field-based indicators, we have categorized 

the potential for assessing the same indicator by use of lidar i as HIGH, INTERMEDIATE or LOW. The field-based 

indicators are the same as the forest ecosystems indicators listed in Table 1 in Evju et al. 2018 for. 

Existing field-based 
indicator 

Eksisterende indikator 
(Norwegian) 

Monitoring 
programme 

Potential for lidar-
based indicator 

Reference for 
lidar indicator 

Biomass of trees Biomasse av trær NFI HIGH Næsset and 
Gobakken, 2008 

Amount of dead wood 
(standing dead wood) 
 

Mengde stående død ved NFI HIGH 
 
 

Pesonen et al., 
2008, 
Martinuzzi et 
al., 2009 

Amount of old-growth 
natural forest 

Mengde gammel naturskog NFI HIGH - 
INTERMEDIATE 

Sverdrup-
Thygeson et al., 
2016 
 

Amount of biologically old 
forest 

Mengde biologisk gammel 
skog 

NFI HIGH - 
INTERMEDIATE 

Sverdrup-
Thygeson et al., 
2016 
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Table 6 cont. 

    

Existing field-based 
indicator 

Eksisterende indikator 
(Norwegian) 

Monitoring 
programme 

Potential for lidar-
based indicator 

Reference for 
lidar indicator 

Amount of rowan, aspen 
and goat willow 

Mengde av rogn, osp og selje NFI INTERMEDIATE 
(biomass of young 
trees) 

Økseter et al., 
2015 

Tree species composition Treslagsfordeling NFI INTERMEDIATE   
(leaf-off data for 
deciduous tree 
species) 

Ørka et al., 2009 

Amount of 
large/old/hollow 
deciduous trees 

Mengde store/gamle / hule 
løvtrær 

NFI INTERMEDIATE 
(large trees) 

Saynajoki et al., 
2008 
Korhonen et al., 
2016 
Maltamo et al., 
2015 

Dead wood, total (m3/ha) 
 

Mengde død ved totalt 
(m3/ha) 

NFI INTERMEDIATE Pesonen et al., 
2008, 
Martinuzzi et 
al., 2009 

Dead wood, coarse 
(diameter >30 cm) (logs, 
standing) (m3/ha) 

Mengde grov (>30 cm i 
diameter) død ved (liggende, 
stående) (m3/ha) 

NFI INTERMEDIATE  

     

Age distribution of trees Trærnes aldersfordeling NFI INTERMEDIATE 
(with bi-temporal 
lidar data) 

 

     

Amount of dead wood    
(fallen dead wood) 

Mengde liggende død ved              NFI INTERMEDIATE-
LOW 
 
 

Pesonen et al., 
2008, 
Martinuzzi et 
al., 2009 

Bilberry cover Dekning av blåbær NFI LOW  

Dead wood, diameter >20 
cm, on areas in early 
succession phase (m3/ha) 

Mengde død ved >20 cm i 
diameter på areal i tidlig 
suksesjonsfase (m3/ha) 

NFI LOW  

Decomposed dead wood 
(logs) (m3/ha) 

Mengde mye nedbrutt 
(liggende) død ved (m3/ha) 

NFI LOW Bater et al., 
2009 
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Table 7 Field-based indicators that are relevant for assessing ecological state, which have been recommended 

for the proposed system for ‘Area Representative Mapping and Monitoring of Nature Types’ (see Table 3 in Evju 

et al., 2018), with associated spatial scale (size) of sample plots. We have used an expert opinion approach to 

suggest if lidar can be used to assess these indicators. For each of the field-based indicators, we have categorized 

the potential for assessing the same indicator by use of lidar as HIGH, INTERMEDIATE or LOW.  

Field survey Feltregistrering Spatial 
scale  
1 m2 

Spatial 
scale 
250 m2 

Comment in Evju et al. 
(2018; in Norwegian) 

Potential for  
lidar  

Reference 
for lidar  

Tree layer 
(cover) 

Dekning tresjikt   X Vedvekster med høyde 
> 2 m: % dekning 

 HIGH Korhonen 
et al., 2011 
 

Tree layer 
(height) 
 
 

Høyde tresjikt1   X Vedvekster med høyde 
> 2 m: høyde (cm) 

 HIGH Næsset, 
2002 

Shrub layer 
(cover) 

Dekning busksjikt X X Vedvekster med høyde 
0,8−2 m: % dekning 

 INTERMEDIATE Martinuzzi 
et al., 2009 

Shrub layer 
(height) 

Høyde busksjikt1 X X Vedvekster med høyde 
0,8−2 m: høyde (cm) 

 INTERMEDIATE Lindberg et 
al., 2012 

Ground 
cover 

Dekning bunnsjikt X   Bunnsjiktet deles inn i 
tre grupper: lav, moser 
og torvmoser, og % 
dekning registreres for 
hver gruppe. 

 INTERMEDIATE    

Field layer 
(cover) 

Dekning feltsjikt X   Urter og vedvekster < 
0,8 m: % dekning 

 LOW   

Field layer 
(height) 

Høyde feltsjikt1 X   Urter og vedvekster < 
0,8 m: høyde (cm) 

 LOW   

Vascular 
plants 
(richness and 
cover) 

Mengde av 
karplanter 

X   Alle karplanter 
innenfor en 1 x 1 m2 
rute registreres med 
mengde, som % 
dekning. 

 LOW  Ceballos et 
al., 2015 

Cover of 
single 
species 

 
Dekning av 
enartsbestander2 

  X Karplanter definert 
som «problemarter» - 
dekning (%). 

 
 LOW 

 
Hauglin and 
Ørka, 2016 

Litter cover Dekning strøsjikt X   Dødt organisk 
materiale: % dekning 

 LOW  

1 the definition of field-, shrub- and tree layer follows NiN-mapping «Natur i Norge» (NiN) (Halvorsen, 2016). 

2 For example Sitka spruce 

 

Nybø et al. (2018) suggested a set of field-based indicators to operationalize “fagsystem for økologisk 

tilstand for terrestriske økosystemer” (Figure 7 and Table 3 in Nybø et al. 2018). In Table 8, we have 

listed the field-based ecological indicators, which could potentially be assessed with lidar or other 

remote sensing techniques. Please note that there is some overlap in indicators/variables between 

Tables 6 and 7, and Table 8. Before any lidar or other remote sensing data acquisition is 

operationalized, experts in remote sensing of forest ecosystems should be involved to give practical, 

hands-on advice on the data acquisition and data management protocols.   



45 

 

 

Table 8 Indicators of ecological state in forest ecosystems, based on Table 3 in Nybø et al. 2018. We have 

included the indicators that are considered as possible to quantify with lidar and other remote sensing. Existing 

data indicate if the indicator is under surveillance (Yes) or if the indicator can be developed from National Forest 

Inventory data (NFI). Which ecological property each indicator is related to is either: Pr- Primary production, Ma-

distribution of biomass in different trophic levels, Fu- functional groups within trophic levels, Vi- functionally 

important species and biophysical structures, La- landscape ecological patterns, Bi- biological diversity, Ab- 

abiotic factors. NDVI (Normalized Difference Vegetation Index) is an index showing photosynthetic activity 

(greening) and is one of the most widely used vegetation indices. The index for a given area can be calculated 

from satellite data, aerial photography or by measurements at ground level, depending on the relevant spatial 

scale. ROS = rogn, osp, Salix spp. 

Forest Existing 
data 

Ecological 
property 

Potential for lidar (and 
relevant supporting data) 

Reference 

Species       

Amount of rowan, aspen and 
goat willow 

Yes Fu, Vi, Bi 
  

INTERMEDIATE 
(Optical for classification) 

Økseter et al., 2015 

Structure       

Area affected by forest fire 
  

NFI Bi LOW 
(Optical for classification) 

Chen, 2017, Veraverbeke et 
al., 2018 

Area affected by insect attack 
  

NFI Bi LOW 
(Optical for classification) 

Lange and Solberg, 2008 

Amount of dead wood 
  

Yes Vi INTERMEDIATE Pesonen et al., 2008, 
Martinuzzi et al., 2009 

Age distribution of trees  
  

NFI Fu, Bi INTERMEDIATE Breidenbach et al., 2008 

Area of biologically old forest 
  

Yes Vi, Bi HIGH - INTERMEDIATE Sverdrup-Thygeson et al., 
2016 

Area of old-growth natural 
forest 
  

Yes Vi, Bi HIGH - INTERMEDIATE Sverdrup-Thygeson et al., 
2016 

Amount of large/old/hollow 
deciduous trees 
  

NFI Vi, Bi INTERMEDIATE (large 
trees) 

Saynajoki et al., 2008 
Korhonen et al., 2016 

Size of forest 
  

Yes La HIGH  

Forest area unaffected by 
management  

Yes La INTERMEDIATE Valbuena et al. (2016) 

Other       

NDVI Yes Pr LOW (optical) Trier et al., 2018 

Biomass of trees NFI Ma HIGH Næsset & Gobakken, 2008 
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4.1.3 Detection of factors affecting biological diversity 

Human land use has transformed ecosystems across the planet and is currently causing an 

unprecedented reduction in biodiversity (Ellis et al., 2013, Dirzo et al., 2014). Climate change and 

pollution are other examples of factors that affect biological diversity. Generally, the threats to 

biological diversity can be categorized in 1) deforestation and habitat loss, 2) invasive species, 3) 

climate change, 4) pollution, and 5) overexploitation (Millenium ecosystem assessment, 2005). 

In forestry, a network of roads are necessary for transporting timber from the forest and to a saw mill. 

Roads can affect biological diversity directly by increasing mortality of animals through traffic and 

indirectly by habitat fragmentation (Coffin, 2007). Both roads and ditches are regular line shapes that 

stand out from the rest of the landscape, and are clearly visible on a DTM made from lidar point data 

(e.g. Korpela et al., 2009). Automatic algorithms applied to the DTM can recognize these patterns. 

Azizi et al. (2014) and Li et al. (2015) detected road from airborne lidar by using both the height and 

intensity information from the echoes to distinguish road-reflected echoes from other terrain 

surfaces. Similarly, ditches can be detected with lidar. Roelens et al. (2018) used the height 

information and intensity from lidar together with spectral information from aerial images to map 

ditches over different land types. Passalacqua et al. (2012) even differentiated between natural 

waterways and manmade structures using curvature analysis. Different GIS-software have inbuilt 

algorithms that delineate features in the DTM such as drainage basins and watersheds (Maidment, 

2002).  

While both roads and ditches are semi-permanent features detectable from the DTM because of their 

shape and reflectance that stand out from the surroundings, clearfellings have to greater extent a 

temporal characteristic. Clearfelling have been the predominant harvest method in Norway since 

1950. Ecologically speaking, clearfellings are dramatic interventions in the natural forest dynamics 

because most of the trees are removed, and the change in solar radiation on the remaining vegetation 

is immense. With multi-temporal lidar data, large changes in vegetation height over an area can easily 

be detected, and areas clear-felled between two lidar campaigns can therefore be classified. Using an 

area-based approach that operate on grid cells, the change in echo height calculated as the difference 

between the values of for example the 90th height percentile of the vegetation echoes for two 

different points in time, would be a reliable indicator of harvested grid cells. With the height change 

information on each grid cell, height change maps could be made, and with a certain cut-off value 

height difference, harvested areas could be detected. Satellite data could also be used to classify 

harvest (White et al., 2017). A recent study by Ørka et al. (2018) used multi-temporal data from 

Landsat and Sentinel-2 with Google Earth Engine to detect harvested areas. With satellite data, 

classification could be done more frequently and covering larger areas than with lidar data.  

Introduced species could be a threat to biological diversity. Hauglin and Ørka (2016) combined 

orthophotos, Landsat images and lidar data to distinguish between, Norway spruce and Sitka spruce. 

Since lidar mainly provides height information, distinguishing between tree species of similar shapes 

often benefits greatly from the addition of spectral information (Asner et al., 2008).   

With multi-temporal lidar data, estimates of forest growth rates can be produced (Noordermeer et 

al., 2018). Because the relationship between forest growth and forest age is non-linear, growth rate 

normal curves are developed. These growth curves enable the growth rate of a specific forest area to 
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be classified into a site index. In Norway, the site index system is labelled H40, and a certain value in 

this system represents the potential height of a tree at 40 years of age. However, with climate change, 

growth rates could change. Noordermeer et al. (2018) showed that bi-temporal lidar data could be 

used to estimate site index, and with repeated estimates it is possible to monitor growth rates and 

thereby effects of a changing climate and possibly also pollution (N-deposition). Hyperspectral data 

can also be used to classify forest productivity (Kandare et al., 2017) because trees growing on soils of 

different productivity have different reflectance. Multi-temporal lidar data have also been applied to 

detect pioneer trees in the treeline ecotone (Næsset and Nelson, 2007. It has been shown that trees 

as small as 1 m of height can be detected with high accuracy (Thieme et al., 2011). Still there is no 

operational system for monitoring the treeline using lidar, but currently there are efforts being made 

in ongoing research projects in Norway to make this a reality. 

Table 9 Relevant information to extract from different remotely sensed data for detection and classification of 

threats to biological diversity. For each of the factors, we have given relevant information than can be extracted 

from remote sensing data and categorized the potential as HIGH, INTERMEDIATE or LOW by using an expert 

opinion approach. 

Factor Relevant information from remote 
sensing 

Potential for  
lidar  

Reference 

Deforestation and habitat loss 

Roads Lidar (echo height, DTM, intensity) HIGH Azizi et al., 2014 
Li et al., 2015 

Ditches Lidar (echo height, DTM, intensity) HIGH Passalacua et al., 2012, 
Roelens et al., 2018 

Clearfelling Lidar (change in echo heights), 
Satellite image (spectral) 

HIGH Ørka et al., 2018 

Introduced species 

Alien tree 
species 

Orthophoto (RGB) 
Satellite image (spectral) 
Lidar (echo heights) 

LOW Asner et al., 2008 
Hauglin & Ørka, 2016 

Climate change and pollution 

Increased 
growth 

Hyperspectral images (spectral) Lidar 
(change in echo heights) 

HIGH Kandare et al., 2017 
Noordermeer et al., 2018 

Changes in 
treeline 

Lidar (change in echo heights) INTERMEDIATE Næsset & Nelson, 2007 
Thieme et al., 2017 

 

4.1.4 Carbon storage 

In addition to biological diversity, forest carbon storage is considered one of the main ecosystem 

services provided by forest ecosystems (Gamfeldt et al., 2013). However, the relationship between 

the two is not clear, and studies have found differing results. To assess the relationship a systematic 

review to explore the empirical evidence for the hypothesised relationship between forest carbon 

stocks and biological diversity was not carried out here. However, we did a search to find relevant 

studies, and the main findings from these studies are presented here. 
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On global scale, Strassburg et al. (2009) found a very strong relationship between animal species 

richness and terrestrial carbon storage. On more local scales, most studies that have examined the 

relationship between biological diversity and carbon storage have been conducted in tropical or 

temperate forests with different outcomes. One study in Spanish temperate forests used 54 000 

Spanish forest inventory plots with sizes between 0.03 - 0.16 (circular plots with radius between 5 - 

25 m), and they found a strong positive relationship between diversity and carbon storage (Ruiz-Benito 

et al., 2014). Another study found a significant positive relationship between neotropical aboveground 

carbon storage and species richness / diversity for 1975 0.1 ha plots (Poorter et al., 2015). This 

relationship was however not apparent for the 294 plots on 1 ha scale (Poorter et al., 2015). The same 

was found for global tropical forests where there were either a weak or no biodiversity-carbon 

relationship for 360 1 ha plots (Sullivan et al., 2017). Another study done on temperate forests in 

Europe found a weak positive relationship between above-ground live carbon stocks and biodiversity 

using 352 plots between 20 and 40 ha (Sabatini et al., 2018). The incongruence between studies in 

tropical and temperate forests may suggest a scale-dependency when it comes to detecting a 

relationship between biological diversity and carbon storage. Scale-dependency of the diversity-

carbon relationship was examined in a study that used global forest plots of different sizes (Chisholm 

et al., 2013). For 0.04 ha plots there were a positive relationship, but for the larger plots with sizes of 

0.25 ha and 1 ha there were mixed results (Chisholm et al., 2013). In the study they argued that plot 

sizes bigger than 0.1 ha may show mixed results meaning that the effects on the diversity-carbon 

relationship are coming from local variation (Chisholm et al., 2013). 

For boreal forests, few studies have examined the relationship between biological diversity and 

carbon storage, and in our search only two studies were found. Using a nation-wide dataset from the 

national forest inventory in Sweden, Gamfeldt et al. (2013) found that the relationship between tree 

species richness and tree biomass production (kg m-2 year-1) was positively hump-shaped when taking 

into account the influence of climate, soil nutrients and forest age. On average, biomass production 

at the average forest age was ca. 50% greater with five tree species than with only one species. Also, 

soil carbon storage and understory plant species richness increased with tree species richness 

(Gamfeldt et al. 2013). Similarly, using nation and state-wide datasets from Spain and Quebec, Lecina-

Diaz et al. (2018) found that forest tree carbon stocks were positively related to both bird species 

richness, tree species richness and overall biological diversity in boreal forest, in both geographic 

regions. This positive relationship was also found for all the subclimates investigated in the study; 

boreal, temperate, humid Mediterranean and steppe (Lecina-Diaz et al. 2018). Forest carbon stocks 

were also positively related to the forest stand variables density and structural diversity (Lecina-Diaz 

et al. 2018). What the two studies also had in common were broad-scale data sets with many small 

plots: 127 000 plots in total with sizes ranging from 0.003 - 0.016 ha and 4500 tracts with a size of 0.13 

- 0.25 ha for Lecina-Diaz et al. (2018) and Gamfeldt et al. (2013), respectively. The same strong positive 

relationship was found for the studies for tropical and temperate forests that had plots smaller than 

0.16 ha.  
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4.2 Lidar recommendations 
In this section, we give some recommendations with regard to which lidar systems that are most 

relevant for assessments of biological diversity. We also provide details related to carrying out 

practical assessments using lidar for biological diversity, biomass and carbon. Towards the end of the 

section, we inform about the acquirements and costs of lidar data.  

4.2.1 Relevant lidar systems for mapping biological diversity 

The strongest benefit of lidar data over forest areas is the capability of describing both the vertical- 

and horizontal structures and the tree biomass, and properties of the terrain. In most cases where 

biological diversity is modelled by means of lidar data, we take advantage of the relationship between 

forest structure as depicted by lidar and the measure of biological diversity. Both pulse and continuous 

waveform lidar systems are particularly useful for retrieving area-based structural information about 

forests.  

With the discrete return pulse systems, the vertical structure of tree canopies are effectively depicted 

by means the point clouds (height measurements of the canopy) over an area of interest. Combining 

point clouds from several echo categories (first, second,…, last) returned from the vegetation can 

provide very detailed depictions of the vegetation structure. Even only using the first echoes can in 

most cases provide a sufficient representation of the vertical canopy structure. However, studies that 

have used lidar data to detect trees in the alpine tree line (Næsset and Nelson, 2007, Thieme et al., 

2011) have shown that solitary trees that are shorter than 1 m often have too little surface area and 

too little mass to trigger an echo from a laser pulse. This, however, might be different in forests with 

a denser layer of short trees that have more mass in total. In a study by Ørka et al. (2016), it was shown 

that tree height as low as 0.5 m could be detected using lidar data with a point density of 0.7 pm-2 in 

a planted regeneration forest. As explained in Chapter 2, the vertical distribution of the laser echoes 

can be represented by height values at different percentiles of the height distribution of echoes. The 

horizontal distribution of the vegetation can also be precisely depicted using the point cloud. Gaps 

and degree of fragmentation over an area can easily be modelled (St-Onge and Vepakomma, 2012), 

and also the texture or roughness of the canopy (Renner et al., 2018). Variables that represent 

cumulative proportional canopy densities can also be calculated as a proxy for canopy density 

(Næsset, 2002) and horizontal heterogeneity can be assessed by the heterogeneity of different lidar 

metrics over an area (Bergen et al., 2009). Lidar data can also be segmented into bins in certain height 

layers of the canopy. 

The sensors that are most frequently used in studies of biological diversity are discrete pulse sensors 

operated from airborne platforms (fixed-wing aircrafts or helicopters; supplementary material table 

A1). There are differences within the sensor categories, like for example with regard to capabilities of 

pulse repetition frequencies and pulse distribution system. However, there are no indications that one 

system is better than other systems. Furthermore, the studies that we have reviewed have applied a 

wide range of different point densities. Typical point densities for commercial projects where lidar 

data is collected for multiple purposes in Norway (Geovekst) are 1-2 points per square meter. In the 

reviewed studies the per square meter point densities range from 0.5 (Simonson et al., 2012) to 500 

(Renner et al., 2018). The usefulness and need for higher point densities compared to what is typical 

will depend on the purpose. However, for most applications a vegetation structure represented by 

typical point densities (1-2 p m-2) seem sufficient. The fact that data from discrete return systems are 
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most common, is also an argument for recommending data from this type of sensors. There are many 

different types of applications that require lidar point data, like for example forest inventory, 

topographic mapping, and planning of new roads. Because of the high number of applications, 

synergies can be taken advantage of if they all use the same type of sensor. Currently, a project is 

ongoing, where Norway is being scanned with lidar (point density of 2 pm-2) for the purpose of 

developing a new DTM for Norway. According to plan, the scanning of 230 000 km2 will be completed 

in 2020, and the data will be free for all users. 

4.2.2 Protocol for sampling of data: remote sensing and ground truths 

Procedures based on a combination of ground-truth and lidar 

Applications where lidar is used for prediction of vegetation properties usually follow a two-stage 

procedure. The first stage involves calibrating an empirical model between corresponding field and 

lidar metrics. The field observations must be related to a defined area or a basic unit, for example a 

circular or square area unit. The field observations must be positioned, typically using global 

navigation satellite systems (GNSS) to ensure that the field observations spatially overlap with the 

remotely sensed data. Spatial overlap is a key requirement for effective use of remotely sensed data 

calibrated with ground truth information. In the second stage, the empirical model developed using 

the pairwise ground-truth and lidar observations is applied to raster cells over the entire area where 

lidar data is available. For this to be possible, the lidar metrics selected as explanatory variables for 

the empirical model must be available for each raster cell. Cell predictions can subsequently be 

summed or averaged for larger area units. 

Since measurements done by lidar can accurately depict forest structure, information from lidar can 

be used even without ground calibration. By using ecological knowledge of habitat preferences for a 

particular species with regard to forest structure, lidar metrics can be used directly to map habitat 

quality for that species (Hill et al., 2014). For example, certain bird species prefer multi-layered forests 

(Mathys et al., 2006), and these can be mapped using information from the height distribution of lidar 

point data. Although such an approach can prove useful for certain species and for the purpose of 

management, the combination with field observations of either presence/absence or number of 

individuals is usually necessary. This is especially important if the purpose is to expand ecological 

knowledge about a specific species (Hill et al., 2014). Many lidar-derived indicators of biological 

diversity can be found in the reviewed literature. However, it is important to point out that the metrics 

that is derived from lidar are dependent on the specific lidar sensor that is used, and the specific 

acquisition parameters used in a particular mission (e.g., Næsset, 2009). Therefore, by using a 

relationship between certain measures of biological diversity obtained in an experimental study or 

operational application, the results might be systematically different if these relationships are used 

elsewhere. The metrics derived from lidar, will also tend to be different between forest types, given a 

certain “true” structural property. For example, the lidar metrics will differ between a spruce forest 

and a pine forest with the same biomass, tree height distribution, etc.  
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Shape and size of ground truth plots - general comments 

Ground truth plots can have different forms and sizes, and these can affect the data in different ways. 

In the case of the circular plot, the positioning can be carried out in the centre, and the area and extent 

will be defined by the circle’s radius. Circles are the most effective shape for reasonably sized plots in 

terms of both positioning and controlling the area of field measurements. However, using circles for 

large field plots may be an issue. It is difficult to be exact with regard to what is considered a large plot 

(Van Laar and Akça, 2007), but plots over 500 m2 can be an issue when using circles. Controlling the 

perimeter of larger circular plots can be difficult if the vegetation is dense and the terrain is rugged or 

steep. However, using range finders based on laser or ultrasound, as compared to a surveyors tape, 

might simplify the work. 

For large field plots, rectangular transects may be a better alternative. Positioning of quadrilateral 

plots requires that each corner is positioned. An alternative could also be that one or more positioned 

corners are combined with the orientation and length of the sides to calculate the position of the 

remaining corners. However, this strategy requires that the orientation can be accurately determined 

and that the positioning of the corners is accurate. Usually, the plot establishment is carried out using 

a compass and a surveyors tape, and it is hard to secure that the angles become exactly 90 degrees. 

Thus, in some cases it might be necessary to position each corner using satellite navigation equipment.  

There are other issues related to plot shape and size. Edge-effects from the plots could be an issue. In 

a forest, there will always be elements outside the plot that affect the growth and properties of the 

trees within the plot (Monserud and Ek, 1974, Radtke and Burkhart, 1998). However, when using lidar 

data to retrieve structural properties from a sample plot, outside trees are important for other reasons 

(Næsset et al., 2015). For example, an outside-plot tree can extend its branches over the plot, and an 

inside-plot tree can extend branches beyond the perimeter of the plot. Thus, borderline trees will be 

only partly depicted by the lidar data. A circular shape has the smallest possible edge-to-area ratio, 

and will therefore be less affected by edge effects compared to squares. By also increasing the plot 

size, the edge-to-area ratio reduces. Another issue is the capability to capture spatial variation within 

the plots. It has to be considered what is an expedient spatial scale for capturing the relevant structural 

variation to explain the presence or magnitude of one or more species in question. Intuitively large 

plots capture more spatial variation. Maleki and Kiviste (2015) tested the effect of both plot size and 

shape with regard to estimating structural indices in a birch forest. They found that more variability 

was captured with increasing size, and the effect of shape was less pronounced.  

Positioning accuracy 

The position accuracy of the data is important, and the required level of accuracy depends on several 

factors. Large plots will partly mitigate inaccurate positions since the relative overlapping area 

between field and lidar data increases with plot size, given a certain positioning error (Gobakken and 

Næsset, 2009). However, an acceptable positioning error will also to some degree depend on what is 

modelled. In general, the requirement for positioning accuracy become more important with 

increasing dependency between the phenomenon that is being modelled, predicted or estimated, and 

the 3D structural properties of the vegetation and terrain as measured with lidar. Modelling the 

biomass of trees typically requires field observations of 200 m2 with a position accuracy <0.5m. 

However, for habitat modelling of mobile species it may be expedient with larger field observations 

(Lone et al., 2014a, Lone et al., 2014b, Vierling et al., 2011), and consequently the positioning accuracy 
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requirement may be less strict. If the vegetation structure significantly changes over short distances, 

the positioning accuracy needs to be high. This is especially evident if the plots also are small.  

When high accuracy is needed (1 cm to 1 m) the use of survey grade GNSS equipment is 

recommended. With this, the position observations are corrected by means of data from a base 

station. Such corrections can be carried out in real-time (real-time kinematic; RTK) or be post-

processed. While the former method is effective in relatively open forests, it requires a continuous 

connection (radio link or telephone) between the rover receiver and the base station. The rover 

receiver is the GNSS-unit used to measure the position of the field plot. The base station is a second 

receiver that continuously measures the positioning error due to ionospheric and atmospheric noise. 

The latter method using post-processing is a better choice in denser forests with regard to accuracy, 

but longer measurement time is needed on each plot compared to the use of RTK. An advantage of 

having accurate positions, is that ground-truth observations easily can be relocated. This enables the 

establishment of time-series and studies of change.  

In cases where lower positioning accuracy is acceptable (1 m to 20 m), handheld devices can be used. 

Many of these devices have functionality where consecutive position measurements can be averaged. 

If averaging is carried out for a considerable time (approximately 30 min), the accuracy can sometimes 

be down to 1 m, but one should not expect accuracies <3 m under forest canopy. Many devices 

calculate a measure of accuracy that can be observed by the user in real time during the averaging. 

The measure is calculated the variation between single measurements. However, this measure is not 

by any means the true accuracy. Devices that observe two or more satellite systems (Global 

Positioning System (GPS), Global Navigation Satellite System (GLONASS), Galileo, Beidou-2) are 

preferable, especially since the satellite coverage of the GPS-system is not optimal for Norway.  

Ground-truth observations for biological diversity application 

The size of the basic unit to apply in a lidar-based survey of habitat quality or distribution of a certain 

species depends on several factors, both in terms of the properties of the lidar data, and in terms of 

what is an expedient spatial scale for the phenomenon that is observed on the ground.  

In terms of the lidar data, the area has to be large enough so that the lidar metrics can be calculated. 

Most of the metrics that are supposed to capture structural variation requires several echoes. In 

principle, you need only two echoes to represent variation, but in practice, the most typical metrics 

does not make sense with less than 10 echoes. With typical point densities (1-2 p m-2), this means that 

a basic unit need to be larger than 10 m2. In principle, there is no upper limit.  

There is also the issue of what is an expedient spatial scale for the ground observations. For a mobile 

species, there is a trade-off between what could be considered the territory of that species, and the 

level of detail that is necessary in a management perspective (Rechsteiner et al., 2017). For example, 

the expedient basic unit for birds might be different from that for arthropods. In the study by 

Rechsteiner et al. (2017), they used a basic unit of 125 m by 125 m. The mapping of not only the 

presence or magnitude of a certain species, but rather species richness (Currie, 1991), basic units of 

one square kilometre might be expedient (Zellweger et al., 2016). The recording of the actual ground-

truth value of species richness for such large basic units are usually carried out by means of sampling, 

for example by observations of occurrence along transects. A much smaller unit was used in the study 

by Vierling et al. (2011), where they predicted the distribution of spiders. In the study, they used a 
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basic unit of 1000 m2. Their field observations were based on spider traps, and were carried out in the 

centre of circular plots with radii 17.84 m. 

Compared to mobile species, the basic units used for mapping stationary species are typically smaller. 

For example, Ceballos et al. (2015) used basic units of 225 m2 (15 m by 15 m) for estimating vascular 

plant richness, and Simonson et al. (2012) used 314 m2 circular plots to model plant species 

composition in a Mediterranean oak forest. Furthermore for the vegetation structure dead wood, 

Bater et al. (2009) used rectangular plots of 625 m2 and 900 m2 to estimate the distribution. 

The area of the unit for which lidar data is extracted might be different from the area of the basic unit 

that is used for the ground-truth observations. In the study by Zellweger et al. (2016), the ground-

truth observations were carried out for 1 km2, but lidar metrics were calculated for 20 m by 20 m 

pixels. Subsequently, the lidar pixels were upscaled to the area of the basic unit.  

The ground-truth measurements will vary greatly depending on the application of the observations. 

Both counts and registrations of presence / absence are common. For some species, such as plants, it 

could be expedient to count the number or measure the biomass for a certain area. For other species, 

such as birds, it is more relevant to observe presence of a species or count the number of individuals 

per species from a given point, but still an area of the basic unit has to be defined. For example, 

Eldegard et al. (2014) counted different bird species by both visual and audio within a radius of 50 

meters, and hence regarded a practical distance for determining if an observation was outside or 

inside the plot perimeter. Additional measurements on a plot, such as measuring the properties of the 

trees within the basic unit surrounding a point observation (e.g. Vierling et al. 2011), is usually only 

done in experimental studies where the explanatory power of field and remotely sensed data is 

compared.  

It is well documented in the literature that the occurrence and abundance of single tree species, as 

well as forest habitat structure and tree species composition, can be directly inferred from lidar, or 

lidar in combination with other remote sensing techniques (Trier et al., 2018). The ability of lidar and 

other remote sensing techniques to capture important aspects of the habitat has been assessed by 

comparing the remote sensing data with data from field sampling plots. Thanks to thorough ground 

truthing in many previous studies, we can now use lidar and other remote sensing data to quantify 

habitat for many taxonomic groups over large areas, without additional field sampling of the habitat. 

These habitat data can be related to spatially explicit measures of biological diversity or single species. 

These relationships can in turn be used to predict biodiversity patterns and species occurrences in 

unsurveyed areas. However, it is important to field validate the predictions to improve the prediction 

maps.  

When sampling data on biological diversity or single species, ecologists have to decide on the spatial 

extent and configuration of the field sampling, typically by some kind of field sampling plots. 

Recommendations about relevant spatial scales will depend on the organism in question, and is 

beyond the scope of this report. As is the question about whether additional habitat data should be 

measured in the field sampling plots. In general, a higher resolution of the lidar data (points per m2) is 

required for species that have habitats that extend over small geographical areas, in order to get a 

strong relationship between the biodiversity response and lidar data. For larger species, spatial scale 

of the sampling plots is of less concern. Indeed, one of the major advantages of using remote sensing 

to quantify habitat is to avoid the scale sampling problem (Bisonette, 2017). On the contrary, using 
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remote sensing data opens up new possibilities for exploring scale-dependence in ecology. For 

movement studies of animals that are large enough to equip with GPS transmitters, spatial extent and 

configuration of field sampling plots is not relevant. Here, the GPS positions of animals and buffers of 

varying size around each position is used to explore animal-habitat relationships with for example 

resource selection functions (Boyce et al., 2002), using spatially explicit habitat data derived from lidar.  

Monitoring 

If lidar data is available for a certain area at multiple points in time, monitoring can be carried out. As 

an example, St-Onge and Vepakomma (2012) used a bi-temporal lidar dataset from a mixed forest in 

Quebec, Canada, to detect canopy gaps that had occurred between the first and second 

measurement. Change has also been modelled for tree height (Hyyppä et al., 2003), leaf area index 

(Solberg et al., 2006) and biomass (Næsset et al., 2013). Thus, these studies, and several others show 

that change in forest structure, and hence indirectly the change in biological diversity, can be 

monitored. As indicated before, lidar data is collected regularly in Norway to serve many purposes, 

and the interval between each scanning is approximately 10-15 years. For such time intervals, data 

are already available for certain areas. 

Using lidar to assess biomass and carbon stocks 

As previously discussed, lidar is particularly suitable for predicting biomass. The study by Næsset and 

Gobakken (2008) showed that lidar could provide both above and belowground area-based estimates 

of biomass. In the review article by Zolkos et al. (2013), the accuracy of estimating aboveground 

biomass from lidar was found to be better compared with other remote sensing sensors. It is 

important to point out that while aboveground biomass is directly associated with the properties of 

the lidar point cloud, the predictability of belowground biomass relies on the allometric relationship 

between above and below ground biomass. More specifically, since the lidar echoes is reflected from 

the aboveground biomass only, the belowground has to be modelled by means of input variables 

representing the properties of the aboveground biomass. 

Furthermore, change in area-based biomass can also be estimated. Næsset et al. (2013) showed that 

lidar assisted wall-to-wall estimation of change could be carried out with an efficiency up to 40 times 

better compared to relying on just a field-based survey. Using lidar for obtaining estimates of biomass, 

usually follow the same two-stage procedure as mentioned earlier. The procedure relies on that field 

observations of trees are carried out so that biomass can be calculated using allometric functions, so 

that ground truths can be established. Models can then be developed and predictions of biomass over 

a grid of wall-to-wall prediction cells can be made. These predictions of biomass can then be converted 

to carbon using fixed biomass to carbon ratios, which are very stable (Penman et al., 2003). As 

mentioned, belowground biomass and carbon can then be estimated from the aboveground 

estimates. However, for large scale assessment of soil carbon as opposed to belowground carbon in 

tree roots, a system such as the National Forest Inventory (NFI) is most expedient. The carbon fixed in 

the soil could be measured by means of samples from the plots of the NFI, which would enable 

estimation of the total amount of carbon per area unit. The carbon measurements could also be 

related to different soil types, so that with a soil type map stratified estimates could be provided. The 

Swedish NFI measures carbon on their field plot (Fridman and Nilsson, 2017), while in Norway soil 

carbon is estimated using the model Yasso (Liski et al., 2005). The latter method uses tree and climate 

data to estimate carbon stock, and it can also be used to simulate change in carbon stock over time. 
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Application of models is always associated with errors, so also with the Yasso model. The relationship 

between soil carbon and the aboveground conditions are still uncertain and there is still research going 

on to bridge this knowledge gap. The role of mycorrhiza-fungi seems to be especially important 

(Kløvstad 2019a,b)  

 

4.2.3 Acquirement of data and costs 

The equipment that is needed for collecting airborne lidar data is substantial and a big investment. 

Each user of the data must therefore in most cases purchase the data from a commercial vendor. 

Before the data can be used for a purpose such as mapping biological diversity, an initial processing is 

needed. In the processing, each echo is classified according to if it was reflected from the terrain or 

the vegetation. The ground echoes is then used to construct a digital terrain model (DTM). This model 

represent ground echoes subtracted from the vegetation echoes so that each of the vegetation echoes 

get a height relative to the ground surface and not to relative to the Earth ellipsoid. All processing 

steps are usually provided by the vendor, and the product that is offered to the customer comprise 

positioned height measurements of the vegetation and the terrain. Further use of these data requires 

knowledge in the use of geographic information system (GIS) tools and statistical software. There is 

also a need for statistical and mathematical competence, both to further process the lidar echoes into 

variables that can be used as input in statistical models, but also to fit appropriate models of the 

phenomenon of interest. 

The cost of purchasing lidar data are dependent on many factors. First, there are always fixed costs 

related to getting the aircraft in the air and planning the operation. Thus, the per area unit cost will 

depend on the total area for which the lidar data is collected. Another factor is the point density where 

higher point densities result in higher costs. There are several ways of controlling the point density by 

varying the pulse repetition frequency, swath width, and flying altitude. In commercial, multi-purpose 

lidar campaigns in Norway, the cost per hectare is approximately 2- 5 NOK.   
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5 Conclusion 

In the review of studies looking at lidar and biological diversity, a surprisingly high number of studies 

from the list of hits from the literature search had to be discarded. This was due to lack of relevant 

quantitative information within the studies, and in the end we did not have enough data to carry out 

a meta-regression. Thus, we are not able to answer all the questions in the announcement. Apart from 

the important documentation of a need for more primary studies, the process has clarified some 

important challenges that need to be overcome in future projects.  

Using lidar for predicting biological diversity over broad spatial scales requires prediction modelling. 

It is important that the modelling approach (descriptive or predictive) is explicitly stated, and literature 

reviews should include modelling approach and not only the type of statistical model as a covariate in 

the meta-database. Typically, a large number of lidar and other remote sensing variables are listed in 

all the studies. To understand the system, we recommend grouping the lidar-derived variables into 

ecologically relevant categories that capture habitat attributes. In addition to species richness, 

biological diversity measurements should be expanded to including other metrics of taxonomic and 

functional community composition. In the future, it may be possible to do a meta-regression based in 

single-species models. However, this will probably mean contacting authors to get access to original 

data. This is because many of the studies have a high heterogeneity of statistical models, and the 

access to the original data will let us get the needed information to calculate effect sizes. 

The review of the literature did however show that lidar has a great potential for predictive modelling 

of biological diversity on a regional scale. Calibration of predictive models using ground-truth 

observations, that can be applied to grid cells over an area is the most reliable approach. However, 

lidar data can also contain relevant structural information that can be used even without calibration. 

This strategy requires that the relevance of metrics calculated from the lidar data is carefully 

considered. It is also important to point out that the metrics that is derived from lidar are dependent 

on the specific lidar sensor that is used, and the specific acquisition parameters used in a particular 

mission (Næsset, 2009). Therefore, by using a relationship between certain measures of biological 

diversity obtained in an experimental study or operational application, the results will likely have 

systematically errors if these relationships are used elsewhere. The metrics derived from lidar will also 

tend to be different between forest types. The use of ground-truth plots is therefore recommended. 

The size and shape of the ground-truth plots must be chosen according to what phenomenon that is 

being mapped, and what might be considered a good management unit. In general, we can say that 

mobile species require larger basic units than stationary, and that large basic units are more useful for 

mapping multiple species than one single species. The positioning of the ground-truth plots can in 

many cases be carried out with handheld GPS-receivers. However, survey grade receivers might be 

needed if the vegetation structure changes significantly over short distances and/or the phenomenon 

that is being mapped is extremely sensitive to changes in vegetation structure.  

Here we have recommended prediction modelling using an area-based approach. With such an 

approach, it is relatively straightforward to obtain wall-to-wall predictions of biological diversity 

measures over relatively large areas. Lidar data is usually collected over the forested part of Norway 

with 10-15 years interval for the purpose of forest inventories, and sometimes even more frequently. 
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Currently, there is an ongoing national laser scanning which provide very large coverage of data in the 

years of this mission. The normal yearly coverage is not this extensive.  

Monitoring of biological diversity using lidar is possible, at least indirectly through assessing habitat 

features. Lidar allows assessing habitat features over broad spatial scales. This information can be 

used to improve predictive distribution modelling of species and groups of organisms, based on known 

habitat-species relationships. Using lidar and other remote sensing to assess indicators of ecological 

state can also be carried out. For example, monitoring studies of ecosystem properties (e.g., biomass) 

that is dependent on vegetation structure, have proven to be efficient. Factors that are threats to 

biological diversity, such as roads, ditches and clearfellings can also be detected. Lidar is a powerful 

data source for assessing biophysical properties of trees and vegetation, and also physical properties 

of the terrain. Combined with other data sources that provide spectral information, the utility of the 

data is huge.  
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